2.近现代研究
18世纪中叶人们已意识到,除行星、 月球等太阳系天体外,满天星斗都是远方的“太阳”。 赖特、康德和朗伯特最先认为,很可能是全部恒星集合成了一个空间上有限的巨大系统。
银河系
第一个通过观测研究恒星系统本原的是威廉·赫歇尔。 他用自己磨制的反射望远镜,计数了若干天区内的恒星。 1785年,他根据恒星计数的统计研究,绘制了一幅扁而平、轮廓参差、太阳居其中心的银河系结构图。威廉·赫歇尔死后,他的儿子约翰·赫歇尔继承父业,将恒星计数工作范围扩展到南半天。19世纪中叶,他开始测定恒星的距离,并编制全天星图。1906年,卡普坦为了重新研究恒星世界的结构,提出了“选择星区”计划,后人称为“卡普坦选区”。他利用1908—1912年勒维特发现的麦哲伦云中造父变星的周光关系,测定了当时已发现有“造父变星”的球状星团的距离。他在假设没有明显星际消光的前提下,于1918年建立了银河系透镜形模型,太阳不在中心。到20年代,沙普利模型已得到天文界公认。由于未计入星际消光效应,沙普利把银河系估计过大。到1930年,特朗普勒证实星际物质存在后,这一偏差才得到纠正。
超巨星
白矮星
银河系物质约90%集中在恒星内。1905年,赫茨普龙发现恒星有巨星和矮星之分。1913年,赫罗图问世后,按照光谱型和光度两个参量,得知除主序星外,还有超巨星、巨星、亚巨星、亚矮星和白矮星五个分支。1944年,巴德通过仙女星系的观测,判明恒星可划分为星族Ⅰ和星族Ⅱ两种不同的星族。星族Ⅰ是年轻而富金属的天体,分布在旋臂上。星族Ⅱ是年老而贫金属的天体,没有向银道面集聚的趋向。1957年,根据金属含量、年龄、空间分布和运动特征,进而将两个星族细分为中介星族Ⅰ、旋臂星族(极端星族Ⅰ)、 盘星族、中介星族Ⅱ和晕星族(极端星族Ⅱ)。
迄今已观测到球状星团132个,银河星团1000多个,还有为数不少的星协。20世纪初,巴纳德用照相观测,发现了大量的亮星云和暗星云。1904年,恒星光谱中电离钙谱线的发现,揭示出星际物质的存在。随后的分光和偏振研究,认证出星云中的气体和尘埃成分。近年来通过红外波段的探测发现,在暗星云密集区有正在形成的恒星。射电天文学诞生后,利用中性氢21厘 米谱线勾画出银河系旋涡结构。
目前,人们对银河系的起源这一重大课题还了解有限。因为这不仅要研究一般星系的起源和演化,还必须研究宇宙学。
暗星云
银河系演化的研究近年来才有一些成就。关于太阳附近老年恒星空间运动的资料表明,在原银河星云的坍缩过程中,最早诞生的是晕星族,它们的年龄是100多亿年,化学成分是氢约占73%,氦约占27%。而大部分气体物质集聚为银盘,并随后形成盘星族。近年还从恒星的形成和演化、元素的丰度的变迁、银核的活动及其在演化中的地位等角度探讨银河系的整体演化。20世纪60年代发展起来的密度波理论,很好地说明了银河系旋涡结构的整体结构及其长期的维持机制。
以前,科学家一直认为,在地球所在的星系中,仙女座星系、银河系和三角星系是三个最大的星系。其中仙女座最大,银河系只是仙女座的“小妹妹”,银河系与仙女座星系的大小差不多。
近年来,国际天文学家研究发现,地球所在的银河系比原来以为的要大,运转的速度也更快。天文学家利用天文望远镜观察得出结论:银河系正以每小时90万千米的速度转动,比之前估计的快大约百分之十。银河系的体积也比之前预计的大一半左右。
科学家观测认为:仙女座星系正以每秒300千米的速度朝向银河系运动,在30亿至40亿年后可能会撞上银河系。但即使真的发生碰撞,太阳以及其他的恒星也不会互相碰撞,但是这两个星系可能会花上数十亿年的时间合并成椭圆星系。
科学家们也指出,体积越大,与邻近星河发生灾难性撞击的可能性也增大。不过,即使发生也将是在二三十亿年之后。
仙女座星系
知识小百科
银河系周边的星系
银河、仙女座星系和三角座星系是本星系群主要的星系。这个群总共约有50个星系,而本地群又是室女座超星系团的一分子。
三角座星系
银河被一些本星系群中的矮星系环绕着。其中最大的是直径达21000光年的大麦哲伦云,最小的是船底座矮星系、天龙座矮星系和狮子Ⅱ矮星系,直径都只有500光年。其他环绕着银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、玉夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子I矮星系。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。