由于现代分子生物学技术的迅速发展,正在形成一套与传统的分类鉴定方法完全不同的分类鉴定技术与方法,从基因水平上分析各微生物种之间的亲缘关系,即系统发育地位。众所周知,原核生物细胞中的16SrRNA和真核生物细胞中的18SrRNA的碱基序列都是十分保守的,不受微生物所处环境条件的变化以及营养物质的丰缺的影响而有所变化,都可以看作为生物进化的时间标尺,记录着生物进化的真实痕迹。因此,分析原核生物细胞中的16SrRNA和真核生物细胞中的18SrRNA的碱基序列,比较所分析的微生物与其他微生物种之间16S rRNA和18SrRNA序列的同源性,可以真实地揭示它们亲缘关系的距离和系统发育地位。在现实研究中,除了选择16SrRNA和18SrRNA作序列分析进行系统发育比较外,还可利用间隔序列(ITS)、某些发育较为古老而序列又较稳定的特异性酶的基因作序列分析,进行系统发育分析。如在环境微生物研究中,对于谷胱甘肽转移酶(GST)的基因序列分析所获得的系统发育鉴定结果与用其他方法所获得的结果具有十分吻合的一致性。随着研究技术和理论的日趋成熟,现在有人提出了分子系统学(molecular systematics)这一理论概念。
系统学(systematics)是研究生物多样性及其分类和演化关系的科学。分子系统学是检测、描述并揭示生物在分子水平上的多样性及其演化规律的科学。研究内容包括了群体遗传结构、分类学、系统发育和分子进化等领域。群体遗传结构(population genetic structure)是指一个种内总的遗传变异程度及其在群体间的分布模式,是一个种最基础的遗传信息。分类学(taxonomy)是研究物种的界定和序级确定。系统发育关系(phylogenetic relationship)和分子进化(molecular evolution)是两个密切相关的过程。在利用现代分子生物学技术在分子和基因水平上获得大量的分类单元尤其是种的遗传信息后,来推断和重建微生物类群的演化历史和演化关系,即建立系统发育树,如第一章中图1-1表示细菌、古菌和真核生物的无根系统发育树。根据分离菌株的16SrRNA或18SrRNA序列与相关微生物种之间的同源性,将分离获得的菌株放置于系统发育树的恰当分支位置,以显示其在系统发育中的地位和与其他种间的亲缘关系。原核微生物中的细菌和古菌的系统发育树分别如图14-1和14-2所示。
图14-1 细菌域的系统发育树
(引自Madigan et al.,2003)
图14-2 古菌域的系统发育树
(引自Madigan et al.,2003)
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。