转换能量的高手
提起能源,人们就会想到煤炭、石油等,其实生物自身也可以产生能,还能够把一种能转换成另一种能,而且转换效率很高。
为了说明这个问题,我们用磨面这件事做例子:磨面机是由电动机带动的,电是从发电厂送来的,发电机是蒸汽推动的,蒸汽是锅炉里产生的,而锅炉是用煤作燃料的。这个过程就是能量转换过程。
在这个过程中、煤的化学能量经过了三次转换,每一次转换,都要损失一些能量,转换效率大约是40%。
人力也能磨面,不过人的能源物质不是煤而是食物。人吃了食物,经过酶的消化作用变成葡萄糖、氨基酸等,再经过氧化作用,变成一种可以产生能量和储存能量的物质——腺三磷(ATP),人想推动磨盘了,腺三磷就放出能量使肌肉收缩,牵引肌腱去推动磨盘。从这个过程中,你可以看到:人体把食物的化学能转换成机械能,一次就完成了,转换效率比较高,大约是80%。
生物转换能量的高效率,引起了科学家们的兴趣,他们模仿人体肌肉的功能,用聚丙烯酸聚合物拷贝成了“人工肌肉”。这种人工肌肉也能把化学能直接转换成机械能。只要配合一定的机械装置,就能提取重物。据实验,一厘米宽的人工肌肉带能提起100公斤重的物体,这比举重运动员的肌肉还要结实有力!
现在我们常见的白炽灯是热光源,灯丝发光一般要烧到摄氏3000度,90%的电能变成热能而白白浪费了,用于发光的电能只占10%。荧光灯要好一些,但转换效率也不超过25%。要想提高发光效率,还得向生物学习。例如萤火虫的发光效率就比白炽灯高好几倍。在萤火虫的腹部有几千个发光细胞,其中含有两种物质:荧光素和荧光酶。前者是发光物质,后者是催化剂。在荧光素酶的作用下,荧光素跟氧气化合,发出短暂的荧光,变成氧化荧光素。这种氧化荧光素在萤火虫体内的腺三磷的作用下,又能重新变成荧光素,重新发光。
萤火虫在发光过程中产生的热极少,绝大部分的化学能直接变成了光能,所以它的发光效率非常高。它是一种冷光源。这种冷光源也引起了科学家们的兴趣。他们正在想办法人工合成荧光素和荧光素酶。等到试验成功并且大批生产以后,人们可以把这种冷光源用在矿井里,用在水下工地上;甚至可以把这种发光物质涂在室内的墙壁上,白天接受阳光照射,储存能量,夜晚便可大放光明。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。