首页 百科知识 基因概念的现代理解

基因概念的现代理解

时间:2023-02-10 百科知识 版权反馈
【摘要】:4.基因概念的现代理解验明DNA是基因的化学实体并确定它的双螺旋结构和复制机制是划时代的事件,它使经典遗传学的基因概念发生了深刻的变化。她提出了一个全新的概念来解释,认为遗传基因是可以移动的。跳跃基因的概念,使人们认识到功能上相关的各个基因,并不一定以紧密连锁的形式存在,它们可以分散在不同染色体或者同一染色体的不同部位上,因此极大地丰富和发展了现代基因概念。受核外基因控制的遗传,它的表现与核遗传不同。
基因概念的现代理解_科学目击者基因

4.基因概念的现代理解

验明DNA是基因的化学实体并确定它的双螺旋结构和复制机制是划时代的事件,它使经典遗传学的基因概念发生了深刻的变化。按照经典遗传学的理解,基因是抽象的、不可分的遗传单位。而DNA被确定为基因的化学实体之后,基因却是个实实在在的化学分子,基因的概念被定义为DNA的一个有遗传功能的片段,这个片段带有通常为蛋白质和RNA编码的一个遗传信息单位。或者说,基因就是一个具有特定的连续的核苷酸线性序列。

以噬菌体MS2为例,它是由3569个核苷酸组成的单链RNA分子(在一些生物中RNA也可作为遗传物质),共有三个基因,分别负责A蛋白、外壳蛋白和RNA复制酶的合成,称之为A蛋白基因外壳蛋白基因和RNA复制酶基因。现在已经搞清楚,在MS2的RNA分子的开头有由129个核苷酸组成的先导序列,接着依次是A蛋白基因(含1179个核苷酸)、外壳蛋白基因(含390个核苷酸)和RNA复制酶基因(含1635个核苷酸)在A蛋白基因和外壳蛋白基因之间有一个间隔区(含26个核苷酸)。在外壳蛋白基因和RNA复制酶基因之间也有一个间隔区(含36个核苷酸)。最后是由174个核苷酸组成的终末序列。先导序列、终末序列和两个间隔区的核苷酸是不表达的,即不能转体为蛋白质。

按照上述的现代基因概念,不仅完全可以解释经典遗传学所能解释的一切。而且还能解释经典遗传学所难以解释的一些现象。例如,经典遗传学解释不同性状差异的原因,只能答之以“不同的基因”,而现在却能用DNA或RNA链核着酸顺序如何改变导致产生不同的蛋白质来说明;还有突变不只可解释为基因的变化,而且还可以用DNA链的重排和它的效应来说明;再有经典遗传学不能回答基因为何能一次又一次地复制,而现在却可以用DNA的自体复制功能来说明。此外,从现代遗传学的观点来看,不能互换进一步分割的,或负责突变的DNA的也可能只包括一个核苷酸对,所以在功能单位内可以进行互换或发生突变的,有时可能只涉及到功能单位的一个小区段,如血红蛋白的点突变。因此,基因作为功能单位、突变单位和重组单位并不是三位一体的。也就是说,基因作为功能单位,它指的是一个具有特定的连续的核苷酸序列,而突变可以是其中的一个或者几个核苷酸对,并不一定是整个基因。至于交换,在一个基因组(指生殖细胞中的染色体数目)中的任何两对核苷酸之间,都是有可能发生遗传物质的交换或者重组的。因此,基因不是不可分的而是可分的。

除此之外,实验还证明基因是可以移动的,这种移动不限于传统的等位基因之间的交换,而还可以在同一条染色体不同区段和不同染色体之间的非同源区段移动。早在20世纪40年代,美国遗传学家麦克林托克在研究玉米籽粒颜色的高频变异时,就已注意到了基因可以移动的现象。她在研究过程中发现,玉米籽粒的颜色很不稳定,有时籽粒上会出现一些斑斑点点。为什么会有这种现象?她提出了一个全新的概念来解释,认为遗传基因是可以移动的。她把这种可移动的基因叫做控制因子或转座子(现在多称跳跃基因)。

这些跳跃基因能在玉米不同的染色体上从一个位点转移到另一个位点,有时像一个新奇的生物学开关一样,开动或关闭基因。比如说,当玉米染色体上产生紫色的基因SG附近插入一个跳跃基因DS时,它即以一定的速率关闭FFI(一种常染色体显性家族性遗传性疾病),使其籽粒不能产生紫色而成黄色。

当DS从Xi附近跳开后,Xi的抑制便解除,随即恢复紫色。DS也可爱另一个跳跃基因AC的作用。当AC 离DS不远时,它可阻止DS的作用,同样可以解除DS 对TO(一种基因)的抑制。如果DS跳到离AC很远的地方时,或者AC本身跳开后,则DS即不受AC的作用,DS又对TO起抑制作用。

这些跳跃基因跳动得如此之快,以致使得受它们控制的颜色基因时开时关,于是玉米粒粒上便出现斑斑点点。由此可见,跳跃基因与传统的基因概念不同,它本身虽不表达某种性状,但却可以引起颇为广泛的遗传效应。尽管麦克林托克的这一发现是很了不起的。但却没有引起当时人们的关注。

大约过了20年,美国的梅勒米、德国的焦敦和英国的夏皮罗等人分别用分子生物学方法,在微生物遗传学的研究中,也发现了类似当年麦克林托克所提到的转座子时,跳跃基因的概念才为人们所普遍接受。跳跃基因的概念,使人们认识到功能上相关的各个基因,并不一定以紧密连锁的形式存在,它们可以分散在不同染色体或者同一染色体的不同部位上,因此极大地丰富和发展了现代基因概念。

此外,近半个世纪的遗传学研究表明,除了核基因外,还有校外基因,即存在细胞质里面的基因。例如,细胞质中的某些细胞器,像质体、线粒体和叶绿体等就含有各自的DNA。这些DNA的作用与细胞核内的染色体基因很相似,于是人们把它们叫做核外基因。

受核外基因控制的遗传,它的表现与核遗传不同。人们通常把它叫做细胞质遗传。细胞质遗传与核遗传的差异,首先表现在它总是表现为母系遗传。所谓母系遗传指的是用具有相对性状的亲本杂交,不论正交或反交,其F1总是表现母本性状的遗传方式。这是因为卵细胞含有大量的细胞质,而精子所含的细胞质却很少。特别是精子在受精过程中,进入卵细胞的主要是细胞核。因此,受精卵的细胞质就主要来自卵细胞了。所以细胞质遗传总是表现为母系遗传。

其次,细胞质遗传杂种后代的遗传行为不符合经典遗传学的三个基本规律,即既无一定的分离比例,也不存在自由组合和连锁与互换的关系。这是由于在细胞分裂过程中,细胞质不像核染色体那样进行有规律的分离和组合。细胞质里的基因复制后的细胞分裂时,不是平均地而是随机地分配到子细胞中去的。细胞质遗传现象的发现,扩大了核遗传的概念。实验证明,有许多生物的某些性状(如草履虫的放毒与否)是由核内基因与核外基因共同决定的,如草展虫释放毒素的核外基因,也要有相应的核内基因的存在才具有复制、增殖和传递的功能。

关于基因怎样发生作用的问题,遗传学家曾为此而感到困惑不解,但生物化学的进展却使人们顿开茅塞,认识到基因的作用可能与酶有关。因为在生物体内所有的生物化学过程都必须有酶的参与,在酶的催化下进行的,如果缺少某种酶一定的生物化学反应就不能进行,如没有淀粉酶,淀粉在生物体内就不易分解等。由此遗传学家猜想到基因对性状发育的控制,也很可能是通过酶的作用来实现的。

20世纪40年代,美国遗传学家比德尔和塔特姆以红色面色霉这种微生物为材料,进行一系列的生化遗传学实验,查明在红色面色霉的生物合成中,每一阶段均受到某一基因的支配,当这个基因因突变而不活动时,则中断了这种酶反应。例如当控制合成精氨酸的基因发生突变对,这一品系的红色面包零就不能合成精氨酸,说明在生物合成过程中酸的反应是受基因支配的。根据这个事实,比德尔和塔特姆在1946年提出了“一个基因一个酶”的理论,把基因与酶的关系作为基因怎样发生作用中的一个关键性论点鲜明地提出来了,但它却没有去探索基因的化学本性和基因究竟怎样导向酶的形成这样一些重大的问题,这些我们前文已经讨论过。不过20世纪50年代分子生物学诞生之后,对这些问题的研究就有了答案或新的进展。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈