第十六章 遗传的本质
一切研究自然的学者都会直观地感知在遗传现象(“她非常像她的母亲!”)与变 异现象之间存在着矛盾或抵触。遗传意味着连续与不变;而变异则暗示了变化与差异。 当育种者进行动物或植物杂交时,他往往会在后代中发现未曾料到的变异体。甚至将同 胞个体加以比较时也常常会发现意外的变异。最后就引出了这样一个重要问题:这新的 变异是从哪里来的?直到达尔文提出自然选择学说时,变异的来源一直是生物学中的一 个关键问题。自然选择只有在变异的来源非常充分(而且这来源必须是可以不断更新的) 时才能实现。怎样才能调和这与遗传不变性之间的矛盾?
传统上的答案是,遗传不一定是固定不变的,遗传并不是完全“硬式”的。事实上 个体的某些性状可能很像它的父本或母本,或者其祖代或更早的祖先。一切动物育种就 是基于这一类硬式遗传的存在。然而,如果遗传完全是硬式的,那就不可能有变异。因 此根据推理变异可能有两种互不排斥的来源;或者某些遗传是软式的,即容易感受各补 不同的影响,或者遗传物质是硬式的,但具有偶尔产生新变异的能力。关于软式遗传和 遗传上的变异来源问题在整个19世纪和20世纪的头30多年中一直有争论。 16.1 达尔文与变异
达尔文自然选择学说的两个基石之一是假定变异的来源或供应是无尽无休的。每一 个体都是独特的,和其它个体不同:“这种个体差异对我们来说非常重要,因为它们为 自然选择提供了素材”(《物种起源》)。但是这变异从何而来?它们的根源是什么? 达尔文为这个问题绞尽了脑汁。变异在达尔文思想中所占据的重要位置,可以从他的 《家养条件下动物和植物的变异》(1868)一书的篇幅达九百页之多得到证明。他曾经 计划写一本相应的自然界的变异的著作,但由于材料太多而吓得未曾落笔。他将有关变 异的大量资料压缩成《物种起源》的头两章(59页)。研究达尔文的现代作者(例如 ghiselin,1969;vorzimmer,1970;以及某些杂志刊物的作者)也都充分认识到变异 的重要意义。对达尔文来说遗传本身及其规律远不如变异及其起因更直接、更重要。
甚至直到现在关于变异及其原因也没有完全弄清楚。19世纪中期这个问题一直笼罩 在一片混乱之中。当人们认识到达尔文终其一生一直关注着变异问题并为之冥思苦索而 仍然困惑不解就可以了解这问题是多么复杂多么困难。通过反思就可以知道只有在遗传 学兴起之后(例如遗传型与表现型的区别)才能澄清大部分问题。另外,由于没有一贯 运用种群思想也是产生某些混乱的原因。
达尔文对变异的困惑和误解最值得注意的一个方面是这些并没有能阻止他提出一个 完善的、的确令人惊叹的进化学说。对达尔文来说,变异只有两个方面是重要的:(1) 它在任何时候都是大量存在的,(2)它是相当“硬式”的。他没有在当时还不能解决 的问题上浪费精力和时间,而是在他的大部分研究工作中将变异看作是一个“黑匣子” (黑箱)。它永远存在并可以在自然选择学说中加以运用。达尔文只是偶尔研究这黑匣 子的内容,即变异的原因,但成效甚微(如他的泛生论,见下文)。幸运的是,就达尔 文所关心的主要问题(例如个体在生存竞争中取得胜利)的解答而言,用不着去研究黑 匣子的内容。它可以推迟到更合适的时候。在科学中取得成功的秘诀之一就是选择“可 以解决的”问题(medawar,1967)。
变异中有两个问题使达尔文感到特别为难。
(1)种田内变异和种田间变异的区别。遗憾的是,达尔文从来没有分清个体变异 和地理变异,这一点(特别是在19世纪切年代以后)严重地影响了他对成种作用(物种 形成)的探讨(mayr,
(2)有两种完全不同的种鲜内变异。育种者和博物学家(事实上是一切和变异打 交道的人)直到20世纪的头20多年都认为有两种不同的变异,不连续变异和连续变异 (又称为个体变异)。不连续变异就是由和“模式”明显不同的一切变异体所表现的变 异,这些变异体和“正模”之间并没有一系列分级的中介;白化体就是不连续变异的一 个例子。就本质论者来说,任何新事物都只能起源于与模式的急剧偏离(突变或骤变), 所以不连续变异在本质论者的进化学说中占有重要地位(见第二编)。
达尔文虽然承认不连续变异作为另一个范畴的存在,但他认为在进化上它并不重要。 和其它早期学者不同,他强调个体变异或连续变异的普遍性和在生物学上的重要意义。 达尔文从什么地方得到这一十分重要的新见解?他主要是从钻研动物育种家的著作中吸 取了教益;这些育种家,从bakewell,sebright开始,都强调个体的独特性,正是由于 这种独特性才使得选择和品种改良成为可能。达尔文本人的分类研究也强化了这种印象, 和在他以前的分类学者一样,在分类研究中他发现在仔细观察时没有两个个体完全相同。 正是这种个体变异(达尔文不厌其烦地一再强调)为选择提供了素材,从而也为进化演 变创造了条件。达尔文本人对这连续变异的实质很不清楚,关干这个问题也一直有争议, 通过nilsson-ehle、east,baur,castle,fisher及其它遗传学家的研究,直到1910 年以后问题才解决(见第十七章 )。
不同意达尔文的人特地提出了两点反对意见。第一,他们声称直到约翰逊及以后, 这种连续变异仅仅反映了表现型的可塑性而且是不能遗传的。他们的另一个反对意见可 以回溯到莱伊尔及以前,即这种连续变异是严格受到限制的,决不能跨越“模式”的界 限。这两点反对意见后来都被否定,个体变异的极端重要性在今天已不再被人怀疑。另 外,在下面我们即将见到,遗传学最后证明在连续和不连续变异的遗传基础之间并没有 真正的差别。
达尔文是他那个时代的产物,遇事都要穷根究底,仅仅认定有大量变异对达尔文来 说还是远远不够的。变异性必然有其可以查知的原因。他不相信“自发” (spontaneous)变异。“我不相信变异性,就像某些学者所曾设想的那样,是在任何 情况下,对一切生物都适用的一种固有的和必然的偶然事件”(《物种起源》)。达尔 文认为变异的最重要原因是对个体的双亲生殖系统的各种不同影响,尤其是震动或环境 发生重大变化。他认为这些影响并不产生特殊的变异体或定向变异;它们仅仅提高后代 的变异性,为自然选择提供更大的活动范围。
达尔文偶尔也承认他有时也不小心地把变异说成是“由于偶然机遇。这当然是一种 完全错误的表达,然而这也正表明了我们坦率承认对每一种特殊变异原因的无知” (《物种起源》)。达尔文的至交胡克(hooker)却看得更清楚,没有必要去为在特殊 条件与在这些条件下所发生的特定变异之间建立因果关系。“我倾向于把最小的(个体) 变异归因于变化的固有趋势;这个原则和物理环境(条件)完全无关”(胡克给达尔文 的信,
达尔文的反对者不顾达尔文的一切否认声明,紧紧抓住他的变异是出自机遇的言论 不放,攻其一点不及其余。实际上这一争论以各种不同形式(如“突变是不是随机 的?”)一直延续到今天。达尔文主义的反对者所无法理解的是达尔文及其追随者从来 没有怀疑过一切变异的真正物理化学原因;他们只是否认变异具有目的论因素。遗传性 变异并不是对适应性需要作出的特殊反应。
要捋出达尔文思想中关于变异原因想法的逐步变化特别困难,因为这和他的关于适 应的原因(自然选择)以及遗传的实质(软式或硬式)的思想变化都有关。不相信自然 选择的人势必要依仗软式遗传,而且必然会主张对环境需要的适应性反应确实存在。一 旦达尔文采取自然选择作为进化演变的机制,他所需要的便只是能产生变异性的过程或 一些过程。然而如果遗传一般是硬式的(下面将会看到达尔文得出了这种结论),也就 是说,如果亲代的性状一般是毫不改变的传给后代,那么就需要有特殊的刺激使它们发 生改变。又由于后代是生殖系统的产物,刺激便必须能影响生殖系统。这一连串论据是 完全合乎逻辑的。
看来达尔文是有证据支持他的论点的。他在自然界观察到既有极其容易改变的物种 又有一律不变的物种,因此他得出了必然有一些因素能影响物种变异性的结论。在这一 点上他回忆起家养物种,如狗的品种和大白菜的变种,它们都假定各自来自单一的祖种。 他还观察到“最有利于变异的条件似乎是在家养条件下将有关生物培育很多代”(1844: 91)。家养条件的哪些方面和提高变异性有关?是什么因素促使一般是如此稳定的遗传 结构发生变化?这“仅仅是由于我们的家养生物是在生活条件和亲种的生活条件如此不 同的情况下被培育起来的”(《物种起源》:7)。达尔文并没有像读到这一段话所可 能设想的那样提出在不同的环境中生活因而直接诱发新的性状,而只是说某种因素,也 许是“食物过剩”,提高了变异性本身。而且达尔文还认为变异性的提高是由于雄性和 雄性生殖系统显然比生物有机体的其它部位更容易感受生活条件变化的影响”(《物种 起源》:8,另见达尔文著作中的其它类似言论)。
这种解释和支持软式遗传者的解释的重要区别是达尔文所说的变异并不是由环境或 生物的需要决定其方向。进化中所观察到的具有方向性的趋向是由另外的原因引起的: “通过自然选择持续不变的积累……引起了结构的重大改变”(《物种起源》:170)。 散见于达尔文著作中的许多言论都暗示了遗传物质一般都不受环境影响。在19世纪70年 代以前实际上只有达尔文一个人认识到这一点。
从达尔文的笔记中可以看出,当他开始考虑进化问题时就和遗传问题结下了不解之 缘,但是他在《物种起源》中很少谈到它。他当时的确认为大多数个体变异是可以遗传 的。“也许考虑这整个问题的正确方法是,把任何一种性状能够遗传当作规律,不能遗 传却是反常现象”(《物种起源》:13)。很明显,自然选择不能偏爱不遗传的性状, 因此“任何不遗传的变异对我们来说都不重要”。直到《在家养条件下的动、植物的变 异》于1868年出版时,他才在该书中以泛生论假说的形式发表了他的遗传观点。这一点 我将在下面介绍,然而为了便于分析起见,我要指出达尔文的遗传学说中有两点科学史 家还没有取得完全一致意见。头一点是达尔文是相信融合遗传还是颗粒遗传。由于这一 争议的实质只有按孟德尔遗传的观点才能充分说明,所以将在介绍了重新发现孟德尔 (见第十七章 )之后再进行讨论。第二个分歧是达尔文对各种形式的软式遗传、尤其是 获得性状遗传,究竟相信到什么程度的问题。
软式遗传或硬式遗传
环境或“用进废退”(或者这两者)能影响性状的遗传这种观点几乎直到19世纪末 还广泛流行(zirkle,1946),许多生物学家甚至到了20世纪也还持有这种观点。 (mayr and provine,1980)。这种观点通常用“获得性状遗传”的词句来表述,然而 这一表述并不准确,因为这种观点通常还包括遗传物质被气候或其它环境条件改变(杰 弗里主义),或者直接受营养条件影响而并不一定以表现型性状作中介。《圣经》(摩 西书上:30)中即记载有怀孕母亲的遭遇能影响后代的故事,畸形学文献也承认这一观 点并以之作为产生怪胎的主要原因。这些情况往拄被解释为非遗传性的表现型的改变。
这种观点所依据的基本概念是遗传物质本身是柔软可塑的,或“软式”的。就这一 理论而言遗传物质改变得慢或快,它是直接改变还是经由“获得性状”改变都无关紧要, 重要的是遗传物质被认为不是固定的,不是不可改变的,不是“硬式”的。奇怪的是, 软式遗传一直被普遍承认,一直被认为是公理,直到1850年以后才有人试图证明它是否 正确并探索其机制。达尔文、斯宾塞和海克尔就是试图从事这项工作的第一批学者。 (churchill,1976)。除了少数被忽略了的先驱以外,首次提出可能唯有硬式遗传这 一种遗传方式还是以后的事(见下文)。
19世纪末叶在新拉马克主义者中都认为拉马克是首先提出“获得性状遗传”的人。 实际上获得性状遗传在18世纪是一种广泛流行的概念,那个时期的所有著名生物学家, 包括布丰、林奈都持有这种观点。例如布鲁门巴赫就相信黑皮肤的人种是由热带的强烈 阳光作用于白皮肤人种的肝脏而形成的。肝脏被强烈阳光作用后就使胆汁变黑、进而使 色素在皮肤中沉着。对人种问题比布鲁门巴赫更有经验的人,例如herder,很轻易地就 能否定他的见解,指出生活在热带地区的白种人及其子女的皮肤都未变黑,而非洲黑奴 的后裔虽然在温带地区居住了好多代,但他们的皮肤仍然是黑色的;如果发现皮肤颜色 发生了显著变化,那就是由于人种间杂交的结果。然而再也没有别的人比prichard (1813)更彻底地否定了气候对人种性状的影响。他的结论是“双亲处于高温气候中所 获得的肤色并不传给其后代,因而并不参与自然变种的形成。”气候之不起作用在动物 中也同样可以得到证明。在动物园或笼子中培育了几代的动物在其外表上丝毫也没有变 化。尽管软式遗传这一概念在早期就被指出是无根据的,但大多数学者却坚持这一观点。 它的支持者对反对论据所作的唯一让步是假定既有软式遗传又有硬式遗传。
承认有不变的本质(本质论者的基本信条)似乎就必然要求相信硬式遗传。因此这 就使我感到非常诧异那时的本质论者是多么容易地能够将软式遗传和不变的本质这一概 念调和起来。他们绕过困境的办法是把按软式遗传的一切性状归因于“偶然”,它们的 变异不影响本质。阿伽西(louis agassiz)则声称本质的一部分内在潜势是能够相应 于环境起变化,甚至是“预见性”的。更加顽固的本质论者则四处寻找气候改变而无长 期后果的事例(如人种迁居)。例如c.f.wolff就十分满意地了解到某些植物从俄国 西部(圣彼得堡)移植到西伯利亚虽然发生了巨大变化,但是它们的后代被运回圣彼得 堡时便又恢复了原来的形态。就他看来这证明了外界因素的影响并不能深入到生物有机 体的本质结构。(raikow,1947;1952)。这很可能是硬式遗传学说的依据,但并没有 继续研究下去。
一旦进化学说被提出以后软式遗传是否存在的问题就变得至关重要。进化是不是像 拉马克所主张的那样由于获得性状遗传?从1859年以后将植物从低地移植到高山然后又 移植回来成为当时检验环境影响的流行方法,bonnier和kerner都曾采用过。然而这方 法并不十分令人满意,因为大多数低地物种的个体并不能耐受高山气候,如果选用具有 高山生态型的物种就必须十分严格地防止移植植株与当地生态型混交;因此kerner“没 有发现任何形态和颜色上的遗传性变化的事例”的结论的影响极小。这个问题通过 clausen,hieser,keck等人的研究在20世纪30年代最后才解决,但是那时已不再需要 去否定获得性状遗传了。
达尔文和软式遗传
达尔文终其一生既相信软式遗传又承认硬式遗传,只是对两者的相对重要性的看法 有所变化。在他早期的笔记中软式遗传显然占上风。他甚至记下了(虽然他并没有充分 信服)在种族间杂交(interracial crosses)中父系可能对以后妊娠的影响(b:32, 181;c:152)以及“双亲的愿望”可能影响后代(b:219)。他的多数言论,相当含 糊因而既可解释为非遗传性变化,又可以看作是对以后世代的影响。(b:3,4;c:68, 69,70,195,220)。甚至就在那个时候达尔文也断然否认肢体的急剧变化(如伤残) 会具有遗传影响(c:65-66,83;d:18,112)。
20多年后,达尔文在《物种起源》中便不再提起育种者可疑的传说,并采取自然选 择作为进化演变的动因,主要依靠硬式遗传。然而仔细阅读达尔文的著作就可以发现他 偶尔仍然引用看来是有利于软式遗传的证据。他承认这一类变异有三种可能来源。第一 种是环境变化的效应通过生殖系统提高变异性,这一种来源可以和硬式遗传彼此相容。 其它两种则要求承认软式遗传:环境的直接效应和用进废退的影响。
环境的直接效应
达尔文认为环境是可能引起变异的因素之一。他在《物种起源》中反复提到“气候, 食物等等可能产生某些细小的和直接的效应”(85,15,29,43,132页)。达尔文还 经常议论家畜和栽培植物品种的多样性及其高度变异性。他将变异性的提高归因于改变 了的、尤其是优越有利的生活条件。事实上在栽培植物中杂交是变异性提高的主要原因 (达尔文在一定程度上觉察到这一点),而在家畜的某些品种中则相反,是通过频繁的 近(亲)交(配)来破坏均衡的上位系统(epistatic systems)以提高变异性 (lerner,1954)。达尔文还往往同样地强调这类直接效应“与自然选择的效应相比其 重要性是十分次要的”(209页)。“生活条件”在产生新变异上并不重要的看法在呕 物种起源。的第10,134页上也都有表述。达尔文在给胡克的信中(l.l.d.11:274) 说得更清楚:“我的结论是除了引起单纯变异性(merevariability)而外的外在条件 的作用极小。我认为这种单纯变异性(使子女不太像双亲)和形成明显的变种或新种非 常不同……我以为形成明显的变种或新种几乎完全是由于自然选择,后者可能被不正确 地称为偶然变异(chance variation)或变异性”。由干达尔文没有明确区分表现型和 遗传型,所以在他列举的所有例子中无法说明他所考虑的由环境引起的变异究竟是遗传 性的或非遗传性的。
也许没有别的时期比达尔文在撰写《物种起源》时对环境的直接效应这样不重视。 但是1162年当他写完了《家养条件下动物和植物的变异》第一卷后,他写信给胡克, “我现在的工作促使我相信物理条件的直接作用很重要。”1878年他承认,“在《物种 起源》的以往版次中我也许低估了(外界条件)的力量”(见vorzimmer,1970:264)。 他在1857年给高尔敦的信中写道,“年复一年他我对这种作用(在个体的一生中通过用 进废退所引起的变化)也越来越重视。”
用进废退(用与不用)的影响
在达尔文认为有利于证明软式遗传的所有现象中,就他看来没有别的现象比用进废 退的影响更重要。他是在研究家畜时认识到这一点的。“毫无疑问在我们的家畜中运用 能加强和增大某些器官,不用则使之萎缩;而且这类变化是遗传的”(《物种起源》 134)。达尔文是如此强烈地意识到这种因素的重要性因而在《物种起源》的第五章 中 用了整整一节来讨论这个问题。他采用下述的例子进行讨论,如不能飞的鸟翼萎缩,粪 金龟子(蜣螂)的驸栉消失,大西洋中马德拉群岛上有一部分甲虫无翅,鼹鼠和其它挖 穴哺乳类的视力退化,穴居动物没有眼睛和色素。对于一般发育不全的器官,达尔文说, “我认为它们形成的主要动因是不用”(454页)。他对这一因素(用进废退)的重视 可以从他在《物种起源》中一再将之看作是进化的动因得到证明(如11,43,134-137, 168,447,454,472,473,479,480页)。当然,用进废退只有在相信获得性状遗传 时才显得重要。达尔文反复论证了这一点。他曾谈到对奶牛经常挤奶能从遗传上使奶牛 的乳房增大。达尔文十分肯定地说:“(由用进废退引起的)改变是遗传的”(134 页)。
现代进化论者对所谓的用进废退效应并不难解释;它是由于稳定化选择 (stabilizing selection)放松(往往被反选择力强化)的结果。虽然达尔文认识到 选择与发育不全器官的形成有关,但是他并不准备完全依赖选择来解释发育不全从而走 向极端。
达尔文的思想仍然在很大程度上受在他以前的概念的制约,他有时按用进废退的观 点来解释所观察到的现象,就我们今天看来这些现象“显然”是由于自然选择。达尔文 通过仔细测定发现,“就整个骨骼的比例来说,家鸭的翼骨比野鸭的轻,而其腿骨则比 野鸭的重”(11页)。奇怪的是,达尔文并没有将之归因于家养条件下的自然选择而是 假定这种变化一部分是非遗传性的,相当于生长在不同土壤中的植物的差异;一部分是 “由于家鸭比野鸭飞翔少、行走多”的缘故(11页)。他和植物以及植物育种家打交道 的经验促使他相信动物表现型的可塑性比实际观察到的要大得多。
另外的一连串证据也表明达尔文承认软式遗传。他认为如果生物长时期处于同样环 境中或者某一结构不断地被运用,则性状的遗传基础将会得到加强:“变种如果长期生 命力旺盛其遗传基础就会越来越强大”。当考虑“某些作用究竟是否变为固有的,可以 遗传的而不是其它的”时,他的结论是“这只能是在连续好多代中不得不按同样的方式 活动的那些作用”(c:171),而且“生物欣欣向荣的时间越久,它对任何变化的抵抗 力就越强;时间越短,抵抗力就越小”。(d:13,17)。一个世纪以后才知道这是稳 定化选择的结果。
达尔文由此所作出的结论是家畜品种或地理变种越古老,在杂交中的影响就越大。 他将这种现象称为“雅乃尔定律”,是按他的一位动物育种家朋友william yarrell的 姓来命名的。达尔文的上述结论显然是来自于他(c:1,121;d:7-8,91)。然而达 尔文也承认这个定律有时也不管用(e:35)。
另一方面,如果某一性状长期处于不利条件下也就自削弱。他认为“如果我们…… 在很多代中将大白菜的一些品种种植在贫瘠土壤中……它们大部分甚至全部都会回复成 野生的原种”(《物种起源》:15)。像这样的一些观点当时在动物和植物育种者之间 最广泛流行的。
有一些近代的历史学家同意darlinston的看法(1959),即达尔文在《物种起源》 的第一版(1859)中只知道硬式遗传,但是在读了詹金的评论(1867)以后就“退回到 获得性状遗传上”。正如vorzimmer(1963;1970)及其世人所指出的,以及从上面对 达尔文的软式遗传观点的分析也可以看出darlington的这一看法是彻底错误的。应当承 认,达尔文在晚年比他在1859年对软式遗传的确作了少许让步,但它从来没有成为他的 解释的主要部分。每当他将获得性状遗传和自然选择两者在进化演变中所起的作用加以 比较时,他总是十分明确地表示他一直认为自然选择是决定性因素。
达尔文的泛生论(泛生假说)
达尔文的《家养条件下动物和植物的变异》(1868)一书中的第二十七章 标题是 “临时性的泛生假说”。他之所以提出这一假说是因为“它可能对把很多事实联系起来 有好处,这些事实目前还没有有效的理由将之联系在一起”(1868:357)。在一章 的 小标题中达尔文列举了“由一个单一观点联系起来的事实,即繁殖的不同类型、雄性因 子对雌性的直接作用、发育、身体各个单位或因子在功能上的独立性、变异性、遗传、 回复突变(返祖遗传)”。
没有一个简单的学说能够为这一雄心勃勃的设想提供所需要的一切答案。达尔文的 遗传学说(他本人多少容易使人误解的加上了泛生假说这个名字)实际上是一整套学说。 头一个学说是可以遗传的性质的传递以及发育的导引是由非常小的、彼此各不相同的颗 粒、所谓的“微芽”引起。身体中的每一种细胞都各有其本身的微芽;杂种的性状镶嵌 是由于亲本微芽互相混合的结果;十分吸引达尔文的回复到祖先性状的现象是由于原先 休眠的微芽被激活的缘故。
正如德弗里首先用简洁的语言所表述的那样,达尔文的这个遗传学说提出生物有机 体各种各样的性状都有其单独的各自独立的微粒基础,是第一个方面俱到的而且内容一 致的遗传学说。它能解释大量观察到的现象;而且也是历史事实,因为随后的所有遗传 学说,特别是高尔敦(galton,1876),魏斯曼(1883-1892)、德弗里(1889)的学 说无不深受达尔文遗传学说的影响。它能解释(和随后孟德尔的解释没有太大的不同) “优先遗传”(prepotency,即显性)和“回复”(reversion,即隐性),再生,以 及其它遗传与发育现象。
正如前面所说,这学说不能解释获得性状遗传。用进废退对外周器官(手、皮肤、 眼、脑)的影响怎样能传给生殖器官?为了说明这个问题,达尔文提出了“运输假说” (德弗里如此称呼)。在生活史的任何阶段细胞能够甩掉微芽,“它们(微芽)能在系 统中自由循环,当提供适当的营养时能通过自身分裂进行繁殖,随后能发育成和它们所 由来的细胞相似的细胞”。(darwin,1868:374)。微芽的这种循环是达尔文遗传学 说的第二部分;它使微芽能在性器官中累积起来,或者在植物的芽部集中。最后,“在 由环境条件变化的直接作用所引起的变异中……按泛生论原则,躯体的组织直接受新条 件的影响,因而甩掉改变了的微芽;这些改变了的微芽连同其新获得的特性传递给后代” (394-395页)。
这是比较狭义的泛生论,也是达尔文学说的批评者在论及达尔文泛生论时所指的。 芽祥物质由躯体运到生殖器官的想法并不是由达尔文首先想到,zirkle(1946)由希波 克拉底算起可以列出90位先驱(另见lesky,1950)。达尔文本人(1868:375)也曾提 到布丰,欧文,斯宾塞和bonnet等人的类似学说并指出他的学说在哪些地方和他们的有 所不同。
达尔文很少谈起他的运输学说,他将之看作是一场“梦幻”或“死胎”,然而却又 认为“它包含有伟大的真理”。当然,它很快就被否定(见下文)。具有讽刺意味的是 在15年后魏斯曼根据一系列事实和学说否定了软式遗传之后,也不再需要达尔文的这一 学说。如果没有获得性状遗传,那么就用不着提出遗传物质从躯体(体细胞)转移到生 殖细胞的问题。
软式遗传的衰微
达尔文是强调硬式遗传的普遍性的第一位学者,然而即便是他也没有完全放弃软式 遗传。那末是谁首先断然否定软式遗传的?每一位先成论者应当毫无保留地反对软式遗 传,但是我还从来没有发觉那一位学者明确地提出过这一点。有人曾提到prichard在他 的《人类体质史的研究》一书的第一版(1813)中首先公开地否定软式遗传。prichard 的确否认过气候与人种差别有关,然而他在文化和其它因素上仍然考虑软式遗传,而且 在他的上述著作的以后版次中还在更大程度上接受了软式遗传。lawrence虽然曾经说过, “后代在遗传上只承袭它们(亲代)的先天特征而不是它们的任何获得性状”,然而在 生育缺陷的原因上仍然考虑各种因素对母体的影响,而且还有迹象表明他有时也相信软 式遗传(wells,1971)。直到19世纪70年代其它学者也都是如此。明确否定软式遗传 的第一位学者可能是西斯:“在软式遗传被否定之前,我一直支持在个体生存期间所获 得的性状不能造传的观点”(1874:158)。后来魏斯曼(1883)、kolliker(1885)、 ziegler(1886)及其它学者都追随了他的这种观点(churchill,1976)。
硬式遗传的先躯及其对立面(例如微尔科)之间的争论表明直到19世纪80年代获得 性状遗传仍然是公认的信念,也说明它被当时的有关生命本质的观点支持的程度。
达尔文的表弟高尔敦(francis gallon,1822-1911)虽然在总体上反对软式遗传 但也可能并不是全然加以否定。在19世纪80年代他对遗传提出了一些具有预见性的观点, 然而显然被当时的生物学家完全忽略了,一部分原因是高尔敦的这些观点是在非生物学 杂志上发表的,另一部分原因是他的某些最具创见性的想法根本就没有发表。例如他干
高尔敦同意达尔文的“大量的、各具独特性质的有机体单位(organic units)” 的学说。由于他反对达尔文的泛生论(至少是德弗里称之为“运输学说”的那一部分), 所以只注意生物的全部潜力都包罗在受精卵中这个问题。他将这些遗传颗粒的总体命名 为(受精卵中的)“定子组”(stirps),它和魏斯曼的种质(1883)以及内格里的异 胞质(1884)显然相同。和达尔文相仿,高尔敦对回复到祖先性状以及个体中突然出现 双亲所没有的性状这一类现象印象极深。因而他得出的结论(正像在他以前的淖丁在 1865年所作的结论一样)是“(受精卵定子组中)大量的胚芽只有比较很少的能够发 育,”其它的就处于休眠状态,有时甚至可以休眠好多代(1876)。在讨论性别的意义 时,他认为性别的功能是保持遗传上的变异性,也就是说防止基因损失(就像我们现在 所说的)。他认为当受精卵是由双亲的贡献共同组成的,这种损失就很少会发生。他意 识到细胞核减数分裂的必然性;他远在魏斯曼之前就提出了配子选择(germinal selection)学说(1876:334,338)。除孟德尔以外他和他的同时代人相仿,认为每 一遗传定子(genetic determinant)在(他的)定子组中由大量完全相同的复制物 (replicas)代表;他还讨论过随机固定(random fixation)以及许多其它有趣的观 点。遗憾的是,在斯宾塞传统影响下他主要按“运动和力”来考虑遗传,因而他将个体 发育作为遗传的结果来解释令人很难满意(1885年以后他又提出了一个完全不同的遗传 学说;见第十八章 )。
在个体发育中未耗尽的那一部分走子组从一代传递给下一代。进化演变究竟是怎样 发生的并不清楚,即使高尔敦在很多年中否定软式遗传,也是用隐约的言辞暗示:“很 可能发生这样的情况,即某些种类的胚芽在很多代中可能并不发育,最后它们可能会发 生相当大的变化”(1876:338)。他之所以采取这种解释是因为他承认“结构上的变 化可能反作用于与性有关的部分”(348页),然而他反对达尔文的运输学说。为了用 实验来否定它,高尔敦对不同颜色的兔进行输血,然后使这些输血过的兔近亲交配;在 其后代中从未发现在颜色上与亲代的有什么不同。按达尔文的假说,如果有不相同的微 芽随血液循环就应当产生不同颜色的后代。这些实验并没有促使达尔文放弃他的泛生论。 他十分生气地说这些实验仅仅表明微芽是按血液循环以外的途径运输。这种可能性被 castle和phillips的实验(1909)彻底否定,他们将一只未成熟黑色豚鼠的卵巢移植到 卵巢已全部切除的一只白色雌豚鼠中。然后将这只白色雌豚鼠与一未经处理的白色雄豚 鼠交配,在连续的三窝后代中全是黑色的。
高尔敦是一位言行与众不同的业余爱好者,在很多领域中他都独辟蹊径。他大力支 持种群思想,对个体的独特性比同时代人了解得更清楚。这促使他发现了指纹的特异性 和鉴别价值。他推动了种群(群体)统计学的发展(hilts,1973);回归与相关这两 个重要的统计学概念就是由他提出的。人们普遍地认为高尔敦是优生学的创始人。
19世纪70年代是一个过渡时期。对软性遗传的全面抨击(除某些方面外)已经消散。 在达尔文的泛生论中细胞仍然被认为是生物有机体的结构单位。即使是具有最进步遗传 学说观点的高尔敦也无法使细胞学的新发现和遗传学说联系起来。因此他无法为他的推 论奠定理论基础。和达尔文相仿,高尔敦并不了解一旦认识到细胞核(而不是整个细胞) 是遗传物质的载体后会引出完全新的问题。这时人们必然会问,细胞中的细胞核与细胞 质是什么关系?细胞质是否向细胞核、尤其是生殖细胞的核输送了什么物质?
应当注意的是直到19世纪70年代关于遗传及其物质基础的观念还是非常模糊的。当 认识到细胞核是遗传载体和发现了核中染色质的复杂结构后情况就完全改变。种质的精 细结构看来并不像是会对一般的环境影响(如气候和营养)作出恰当反应的结构。染色 质的精致纤巧结构看来更符合硬式遗传而不是软式遗传。过去一直认为是能证实软式遗 传的证据可靠性如何?新证据是否有利于否定它?遗憾的是,高尔敦和达尔文都没有觉 察到这一时期冲细胞学在德国的长足进展。 16.2 魏斯曼
魏斯曼(august weismann,1834-1914)不仅首先十分明确地提出了上述问题而 且也是对这些问题作出明确答案的第一位学者,他是古往今来伟大的生物学家之一。在 上一世纪研究细胞学、发育和遗传的学者中,魏斯曼的特点在于他是一位毫不妥协的自 然选择论者。他的进化学说排除了获得性状遗传的一切残余或其它形式的软式遗传,被 称为新达尔文主义(romanes,1896)。
从科学的方法论角度考虑,在他的那个时代他也是以对问题的仔细、理智分析而著 称。当他要解释某个现象或过程时,他总是试图推究各种可能的解答,其中几乎毫无例 外的包括现在认为是正确的答案。由于那时资料不足、有时甚至只有错误的资料,所以 魏斯曼也选择了现在被否定的解决途径。但是这丝毫也不能掩盖或减少他的成就的光彩。 他从来不草率地作出抉择而总是首先全面地探究一切可能的解释。他的遗传学说是第一 个真正完整的学说,他的推理为整个下一代的研究铺平了道路。正如correns 所说,在 魏斯曼的铺路工作之后于1900年重新发现孟德尔定律就算不上是伟大的成就了。
魏斯曼(1834年1且17日生于德国法兰克福)在青年时代就热心于采集蝴蝶、甲虫 和植物。他先学医并行医几年,后来才转向动物学(组织学)。但改行不久就患了严重 眼疾不能在显微镜下从事研究并迫使他半休。这倒使他因祸得福。他从实验研究转向理 论研究,将全部时间用来深入思考生物学问题并探索其答案。他最关心的是,经由自然 选择的进化,遗传的物质基础,发育机制这三个互相关联的领域。他比他同时代的人看 得更清楚关于达尔文主义是否正确的重大争论如果没有一个完整的遗传学说是永远无法 解决的。
他的第一篇关干遗传的重要文章发表于1876年,80年代发表了一系列重要论文,最 后在1892年出版了他的不朽名著、628页的土种质论。(keimplasma)。和一切富于想 像力的开拓者相仿,魏斯曼十分虚心,当他认为他的学说由于新的证据要求修正时,他 从不吝于修订。可惜的是,他的某些修订,尤其是1890年以后发表的,从今天看来并不 都是恰当的。
魏斯曼在他于1876年提出的遗传学说中将遗传解释为是由于分子运动的结果,并引 用了他所赞同的von helmholtz(1871)的一句话:“一切定律最后都归结为运动定 律。”他之反对达尔文的泛生论并不是由于它支持软式遗传而是因为它基于物质而不是 根据运动。魏斯曼在那时仍然相信“外界条件对可以遗传的进化物质产生影响”(1868: 12)。然而他对软式遗传的重视程度显然逐步减少,因为他在1875-1880年之间曾经通 过很多实验对它进行过验证。
魏斯曼于1883年和1885年提出的遗传学说不仅和他以前的尝试大不相同而且是真正 完整全面的。它由两个新见解统帅。第一个是所有的遗传物质含于细胞核内。正如魏斯 曼十分明确指出的,他的学说的“基本观点是,遗传是将具有一定的化学结构、归根到 底是一定的分子结构的物质从一代传递给下一代来实现的”(1889;英译本:167)。 另一个新见解是不承认任何形式的获得性状遗传。
要否定获得性状遗传有三种办法。第一种是证明所设想的运行机制是不可能发生的。 这是魏斯曼的主要研究途径。在细胞的结构和细胞分裂中没有什么能使获得性状遗传得 以实现。事实上,在某些生物(魏斯曼特地选用了水螅)中未来的生殖细胞在刚刚进行 过几次细胞分裂后的动体早期即已隔离并“被搁置在一边”(按日常用语来说)直到繁 殖过程开始。对生物有机体其余部分的影响将不可能传递给已隔离的生殖细胞的细胞核。
这一观察结果使魏斯曼在1885年提出了他的“种质连续”学说。这学说指出从一开 始“种迹”(germ track)就和“体迹”(soma track)分开,因而体质所发生的情况 不可能传给生殖细胞及其细胞核。我们现在知道魏斯曼的基本观点,即种质与它在表现 型中的表现彻底分离,是完全正确的。他提出这种分离的直觉也是无可挑剔的。然而在 可能实现这一点的两种方式中他选择了生殖细胞与体细胞的分离,而我们现在知道最重 要的是每个细胞中细胞核的dna程序和细胞质中蛋白质的分离。
否定获得性状遗传的第二种方式是通过实验。如果真有获得性状遗状,那么便必然 有某种东西从受了影响的部位传给生殖细胞。用进废退的旧学说(达尔文甚至也在一定 程度上承认它)可以通过完全不使用某一结构的方法(payne的实验)进行检验;或者, 如果有某一器官将微芽传送给生殖细胞,那末将该器官切除然后连续经过许多世代以后 将会使这器官逐渐萎缩。最后,如果植物由于栽培条件不同而发生了可以遗传的表现型 变化,那末从纯系(pure line)的最大、最小个体中进行选择育种就会产生渐进性结 果(johannsen,1903)。从hoffmann和魏斯曼开始,这类实验一直进行到20世纪30年 和40年代,但是实验结果始终都是否定的(另见galton,romanes,castle与 philipps)。换句话说,获得性状遗传学说被检定它的正确性的所有实验所否定。
否定获得性状遗传的第三种途径是指陈那些声称需要用获得性状遗传来解释的现象 可以根据达尔文学说同样加以说明或说明得更圆满。从20世纪20年代一直到40年代有关 进化问题的文献都是为了解决这个问题。
19世纪70年代魏斯曼一直相信获得性状遗传。是什么确切原因促使他转变观点还不 清楚。也不了解魏斯曼究竟是先认识到获得性状遗传不合理然后便采取种迹学说还是先 后次序正好反过来。事实是在他的1883年的文章中就已经有不少地方反对软式遗传,因 而可以有充分理由认定这一总的认识先于提出一种特定机制。魏斯曼在19世纪70年代已 经是一个也许根本不需要一种额外机制的坚定选择主义者这一事实也支持这一解释。
魏斯曼否定软式遗传的这一革命性观念招来了强烈的抵制或反对。它不仅受到19世 纪80年代和朋年代势力达到顶峰的新拉马克主义者的攻击,甚至也遭到正统的达尔文主 义者(他们仍然接受达尔文一度赞同的用进废退观点,例如romanes,1896;plat, 1904)的非难。然而魏斯曼的观点却被英国的lankester,poulton,thiselton dyer采 纳,一直到20世纪30年代也许他在英国的支持者比他在本国(德国)的支持者还要多。 到了本世纪30年代和40年代,由于进化综合的结果他的观点才被普遍承认(mayr and provine,1980)。
魏斯曼的遗传学说
魏斯曼在排除了软式遗传这一干扰因素之后就着手提出他自己的遗传学说。在评价 这一学说肘必须记住,和研究细胞学和发育的其它一切德国学者相仿,比起从一代传递 到下一代的机制来说魏斯曼更加侧重于解释发育的遗传控制。他的结论是“胚胎发生时 的有秩序变化必然是种质中相应的有秩序变化的结果”(1892:61)。几年后(1899: 21)他在回顾他提出这一学说的当时,“在说明个体发生的分化上只有两种假说可供选 择:(1)有秩序地和逐渐地将存在于种质中的全部遗传潜力分割成越来越小的小群 (被分隔到不同的细胞中去),这是第一种假说;(2)另一种假说是一切性状的定于 (determinants)在发育中的生物有机体的一切细胞中仍然保持在一起,但是其中每个 定子被调整只对激活这一性状的特定刺激起反应。这样一来就成为单纯的“分割”学说 和单纯“激活”学说。我决定选择前者,因为根据当时已知的事实看来它更有可能。” 现在我们都知道这一选择是错误的。
在详细介绍魏斯曼的遗传学说之前我再一次提请读者注意的是他非常明确地认识到 遗传型和表现型的区别。实际上在他的一些言论中他非常接近于提出发育是由某种遗传 程序所控制的主张。他反对bonnet的进化学说中所提出的遗传定子是即将发育的器官本 身的预成雏型的观点,而他认为遗传定于是“以特殊方式介入发育过程的活性单位,这 特殊方式就是所产生的性状正是它们(遗传定于)所必须决定的”(1899:23)。
由于魏斯曼是从发育生理学家的角度研究遗传问题,所以他试图根据遗传物质对个 体发生的影响来解释它们的本质:“染色质能赋予细胞(染色质即位于其核中)以特殊 性状。考虑到生物有机体所由以构成的成千上万个细胞具有极其不同的性状,这就很明 显控制它们的染色质在每个细胞中不可能是相同的,而必定是根据细胞的不同性质而各 不相同”。
魏斯曼为控制个体发生的遗传单位拟订了精细的等级结构。最小的遗传单位是生源 体(biophore),每个生源体由具有生长和复制能力的各种分子的集群组成,它控制细 胞的特定性质。一切生物都由生源体组成(1892:56—57)。生源体的可能种类的数目 是无限的,也就是说和分子的可能结合(化合)数同样多。细胞核和细胞也都是同样由 生源体构成,虽然细胞质的性质是由细胞核决定的。
肌肉细胞、血细胞以及身体的其它部位则由生源体的特定复合物控制,这类复合物 被魏斯曼定名为定子,它们是高一级的等级单位。定子是遗传型的单位而生源体则执行 生理功能。单个细胞可能含有相同定子的无数复制品(1892:81);配子的细胞核尤其 如此。魏斯曼学说与孟德尔遗传学说的主要区别是魏斯曼主张单个细胞(包括配子)可 能含有同一定子的无数复制物,而在孟德尔遗传学说中只有两个(分别来自双亲)。这 一唯一的区别就要求有两种完全不同的遗传学说。
定子又联结成由种系发生取得的结构(phalogenetically acqdred architecture) 形成更高一级的单位遗子(ids),魏斯曼有时将之看作是和染色体相同。种质含有几 个(如果不是许多的话)遗子,它们和生源体相似能够生长和复制。每种单位的复制速 度与其它单位的无关。
魏斯曼学说的重要组成部分如下:
(1)对每一特征有一特殊的颗粒(生源体)。
(2)这些颗粒能生长与繁殖,与细胞分裂无关。
(3)细胞核与细胞质都含有这些生源体。
(4)某一生源体可以由单个细胞核(包括生殖细胞)中的许多复制物表示。
(5)细胞分裂时子细胞可能接受不同种类和数量的生源体(不等分裂)。
正如我们现在所知道的,上述(2)至(5)款都是错误的,并和魏斯曼不能提出正 确的遗传学说有关。摩根和他的学派由于采取了完全不同的策略因而在魏斯曼失败处取 得了成功。他们没有试图从个体发生上去解释基因而是从种系发失的角度去研究基因, 也就是说不是研究发育遗传学的单位而是研究传递遗传学的单位。
魏斯曼的有创见的学说立即遭到猛烈的抨击,特别是那些偏袒个体发生的激活学说 的植物学家(见上文)。在很多种类的植物中幼芽几乎可以在植株的任何部位长出并发 育成花,以及从单片叶子或其它营养组织能重新建成新植株(包括产生花的生殖细胞) 的事实完全否定了种迹和体迹的严格划分。这些实验以及其它实验同样也都证明不等核 分裂(即母细胞的遗传颗粒不相等地分配给子细胞)不可能发生。另外,茹(roux, 1883)曾经令人信服的证实除非细胞分裂时种质均等分裂,有丝分裂的全部细致过程就 毫无意义。kolliker(1885),oskar hertwig(1894),driesch(1894)十分出色地 概括了反对魏斯曼的“分割”学说的各种证据。
个体发生的另一遗传学说
各种各样的批评促使人们对个体发生中的遗传过程作出另外一种不同的解释,这种 解释将和细胞核与细胞质的关系以及分化们题有关的两个重要新概念合并了起来。
stragburger(1884)注意到细胞核与细胞质在化学上的差异从而提出细胞核永远 保持完整但能产生分子振动,“这分子振动传给周围的细胞质后便支配细胞的代谢过程 使细胞具有物种特异性的性状特征。”西斯以及其它学者也采取类似的物理解释。 haberlandt(1887)则提出细胞核传给细胞质的并不是分子振动而是特殊的分子(物 质),后者控制细胞活动。德弗里(devries,1910:203)曾用酶来检定haberlandt所 设想的分子。遗憾的是,haberlandt并没有沿着他这一出色的学说继续探索,因为它几 乎预示了信使核糖核酸的存在及其作用。
德弗里本人另外提出遗传单位泛子(pangens)从细胞核转移到细胞质从而决定有 关细胞的特性。这种设想被魏斯曼采纳(churchill,1967)。魏斯曼充分意识到并不 是所有的遗传单位在一切细胞中的任何时间内都能够发挥作用。但是他由于两个原因而 反对基因的激活学说。第一,他认为一个细胞的活性是由一个定子(生源体集群)控制 的,他无法理解如果控制细胞活动的定子失活后细胞将会发生什么情况。另外,他简直 无法设想能控制生物机体成千上万个不同走子的激活与失活的某种机制:“如果假定种 质中的一切定子在个体发生时都被传递给所有的细胞,那么就必须通过某个细胞中的所 有定子(除了只对这一细胞起控制作用的那一个定子而外)有秩序的失活来解释清楚有 机体的全部分化”(1892:86)。他并不了解每个生源体(现在我们可以说是“基因”) 可以独立地激活与失活,他也不了解细胞的活性是由于细胞质中细胞的扩散产物与细胞 核活动产物交相作用的结果。魏斯曼并不否认激活与失活。但他将之限于定子而不是生 源体(1892:100-101)。其次,他的反对者指摘他相信极端先成论(extreme preformationism)。这种指摘是有相当充分理由的。魏斯曼曾经说过,复杂性状来自 事前组装好了的生源体,即定子。孔雀尾羽上的“眼斑”不大可能是由大量独立的基因 产生;这些眼斑要求有仔细组装好了的成套定子。他强调的完全是结构方面,并没有考 虑生长、发育速度,生源体的激活与失活的时态等等。激活学说中对决定特征的这种原 子论解释反而使得人们放弃了这学说。
由魏斯曼学说引起的争议使得人们越发关心发育问题,在某种意义上越发离开了真 正的遗传学说。这从赫特维克(hertwis,1898)的研究就可以清楚看出。德弗里大概 是继续专心研究传递遗传学的唯一学者。
性别的意义
细胞分裂时遗传物质的分配并不是魏斯曼对遗传问题作理论探讨的唯一方面。他在 对遗传问题深思熟虑之后提出了几个重要的新学说,其中之一就涉及议论纷纷的有性繁 殖的作用问题。为什么母本要“浪费”一半的生殖力来生产雄性后代而在单性生殖物种 中的雌体无需受精就能繁殖因而将生殖潜力提高了一倍?魏斯曼指出以往提出的关于性 别的生理学说,即有性生殖是一种返老还童过程,并没有充分根据。他反而说有性繁殖 是能产生无限的个体变异的唯一途径,而这正是生物种群的主要特征。在受精时“就好 像是两股遗传趋向汇合(结合)在一起。我认为这种结合是可以遗传的个体性状的起因, 而且我还相信产生这样的性状是有性繁殖的真谛。这一过程(有性繁殖)的目的是产生 作为自然选择形成新物种的素材的那些个体差异”(1886:279)。
这决不是一个新颖的观念,因为早在几世纪80年代herder(1784-1791:138)就 曾十分敏锐地讲过,“自然在其物种中将形态的多样性和定型性结合起来的最有效方法 是创立雌雄两性并使之配合。双亲的特征在其子女的面貌和体型上结合得是多么巧妙; 就好像它们的灵魂是按不同的比例注入到子女中,就好像它们组成机体的千倍力量被分 配到其子女中似的,而且我们往往还发现祖先的特征也反映在后代中。”当然,这样的 变异只有在同时也承认自然选择时才具有生物学意义。奇怪的是,在达尔文思想中作为 个体变异来源的有性繁殖只具有非常次要的作用。毫无疑问在性别作为变异来源的重要 意义方面魏斯曼是主要的拥护者(见第十一章 ),虽然高尔敦(1876:333)也曾经认 识到这一点。
当我们审视魏斯曼整个一生的事业时,我们对他所分析问题的多样性以及他通过判 断正确的直觉一再对问题提出合理的解释不能不感到由衷的敬佩。他唯一的重大错误是 放弃了激活学说从而迫使他采纳了不等分裂(他称之为“分割学说”)和颗粒的等级划 分。魏斯曼在大量文章中提出了各式各样的生物学问题,其中有一些,例如“死亡的生 物学意义是什么?”是以前几乎从来没有人提出过的。他的主要兴趣是遗传和进化。很 早以前e.b.wilson就曾说过现代遗传学说是植根于魏斯曼的基础之上。在软式遗传的 影响正处于顶峰的年代,魏斯曼是排它性的硬式遗传的支持者。在倚重物理力的年代, 是他强调了颗粒物质和所谓的新先成论。他的遗传学说奠基于颗粒遗传的假设上;事实 上他特地驳斥了融合遗传学说(1892:388,544)。正是他强调了遗传单位位于染色体 上并且预言了减数分裂(galton,1876,另见第十七章 )。魏斯曼作为一个进化论者以 其毫不妥协的态度十分强调自然选择在发展进化学说上也发挥了同样重要的作用(新达 尔文主义)。虽然早期的孟德尔学派(包括191o年以前的摩根)反对魏斯曼,但他的观 点,尤其是遗传学在进化问题的应用上,最后还是广泛流行了开来。 16.3 德弗里
荷兰植物生理学家德弗里(hugo de vries,1848-1935)在两个方面和魏斯曼及 德国的细胞学家根本不同。他在大学时学习的是有机化学和物理化学,这就使得他能够 比同时代的动物学家和植物学家从不同的和更有意义的角度来看待遗传的功能性问题。 另外,他的主要遗传学兴趣是传递遗传和生物多样性的起源。
研究德弗里在变异和遗传问题上对我们的影响时必须分清他的三部著作的影响; 《细胞内泛生论》(1889,本章引用文引自1910年英译本),重新发现孟德尔定律的报 告(1900),以及他的《突变学说》(1901-1903)。细胞内泛生论在1892年以前出版, 因而对魏斯曼的遗传学说(1892)产生了影响。在他的泛生论中包含有细胞学研究的新 进展,魏斯曼的著作也是如此;但是德弗里特别强调传递遗传学问题。奇怪的是,他的 这部优秀、具有说服力的著作并没有产生应有的影响。只是当魏斯曼的学说被否定后人 们才想起德弗里著作中的观点是多么接近于其后的新发现。在撰写《细胞内泛生论》过 程中的思想准备使德弗里注定后来成为重新发现孟德尔(定律)的学者之一。
德弗里对遗传的主要兴趣在进化方面,和温格、孟德尔相仿(见下文),他也是从 物种问题开始研究。德弗里拒绝接受物种“作为一种单位和它的特定性状的总体当作一 个不可分割的概念”(1889:11)。“但是如果从遗传学说的角度来考虑物种性状,立 刻就会发现这些性状是由或多或少彼此独立的单个因素组成。”研究生物有机体必然会 “坚信特定性状的复合性质。”
有两种情况对德弗里的思想产生了重要影响:他在机械还原论者julius sachs的实 验室(德国符茨堡)中工作了一年;他和荷兰物理化学家范特霍甫的亲密友谊。因此他 要把分析研究一直进行到生物界的基本单位就毫不足怪。“每个物种的性状由无数的遗 传性质组成”,这些遗传性质的基础是遗传因素,即“遗传科学所必须研究的(遗传) 单位,正如物理学和化学研究的是分子和原子,生物科学必须深入到这些单位,以便通 过它们的组合来解释生物界的现象”(1889:13)。
遗传单位
从斯宾塞到魏斯曼许多学者先后提出了关于遗传单位的本质的三种学说。这些学说 可以用十分简化的方式述之如下:
(1)每个单位具有一切物种性状,可以这样说,它是整个物种的雏型(斯宾塞、 魏斯曼的遗子,内格里的异胞质)。
(2)每个单位具有单个细胞的特征(达尔文的微芽,魏斯曼的定子)。
(3)每个单位代表单个物种的性状(德弗里的泛子,魏斯曼的生源体)。
德弗里的1889年的学说和魏斯曼1892年学说的区别是,德弗里认为每个泛子都能独 立存在并具有被激活的能力,还能与其它泛子各自独立地发生变化(魏斯曼的生源体被 联结成定子)。德弗里(1889:67-68)还以充分的理由驳斥了魏斯曼反对承认对应于 每一遗传特征的个别单位。德弗里的遗传学说可以归纳如下:
(1)遗传现象起因于遗传性质的物质载体,被称为泛子。
(2)每一个遗传性状有其特殊种类的泛子。
(3)生物的分化程度愈高.它具有的泛子的种类也愈多。
(4)每个泛子能够不依赖其它泛子而独立发生变化。
(5)所有的细胞核含有相同的泛子,但是只有极其有限数量的泛子释放到该细胞 的细胞质中,所有其余的泛子以失活的形式留存在该细胞的细胞核中。
(6)某一细胞核可以含有某一指定泛子的许多完全相同的复制品。
(7)为了活化,泛子必须从细胞核移动到细胞质中。
(8)泛子不从细胞质移动到细胞核中。
(9)泛子不能从一个细胞移到另一个细胞。
(10)泛子总是在细胞分裂时分裂,但是也可以在细胞分裂之间分裂,这样一来某 一指定泛子就可以在细胞质中(同样也在细胞核中)由很多完全相同的复制品代表。
(11)生物有机体的全部原生质都含有泛子。
(12)泛子偶尔也发生变化,这就“成为变种和物种起源的开端”(1889:71)。 (这就是他以后的突变学说的来源;见第十二章 。)
德弗里完全有理由声称他的学说是对遗传进行实验性分析的极好基础,在他的这一 优秀著作出版(1889)以后不久他本人就着手执行这一实验计划。他的依据是每个遗传 单位的独立变异;因此“在我们的栽培实验中每个遗传单位本身都成为实验处理的对象” (1889:69)。
毫无疑问德弗里的遗传学说比它以前的所有遗传学说都更接近现代概念。然而他有 两个重要的假设是完全错误的:泛子本身从细胞核移到细胞质;某一指定泛子在细胞核 中能够以许多(或复式)复制品的形式存在。他认为这样就能解释显性和定量性状。 “如果某一类泛子在数量上少干别的泛子,那末它们所代表的性状就只能轻度地发育; 如果它们的数量极少,性状就成为潜在的”(1889:72)。德弗里和魏斯曼以及19世纪 80年代和90年代对遗传问题作理论探讨的其它学者同样有这类错误主张。很明显,如果 作出这种假定则计算孟德尔的比率就毫无意义。在遗传学历史上下一个关键步骤就是推 翻或否定遗传因子的“复式复制品学说”(multiple replica theory of genetic factors)。另一个步骤是全面否定融合遗传。
从19世纪60年代到90年代是一个思考、推论完全不受限制的财期。无论是阅读斯宾 塞、海克尔,达尔文的著作或高尔敦、内格里、德弗里、魏斯曼的著作时就必然会得出 这样的结论。这个时期仍然受到错误概念的影响而且不能恰当地分清一个复杂问题各个 组成部分之间的区别。这包括不能明确分辨世代之间的性状传递与基因生理(分化); 不能区分(德弗里除外)单位性状和物种本质;以及无法辨别表现型和遗传型。然而这 一时期却是遗传学发展必不可少的一个阶段。在这一肘期中首先提出了正确的问题,培 养了对被传递的遗传物质的颗粒性质和化学本质进行研究的兴趣,奠定了细胞学基础否 则就无法制定说明因果关系的遗传学说。在这一时期的末期几乎所有可以想象到的各种 遗传学说都被提了出来,这时只等新的见解或新发现出现以便在这些互相竞争的学说中 作出明确的抉择。这一决定性事态是在1900年重新发现了孟德尔的研究工作。这一事态 一举就引出了生物科学的一个完全新的分支学科。 16.4 孟德尔
当19世纪最后30年有这样多的著名生物学家如此孜孜以求地探索遗传问题时,这问 题却已经有了答案,这在科学史上不能不说是一个极大的讽刺。这答案发表在《布隆博 物学会会刊》(ploceedings of the natural history society of brunn,1866)上。 孟德尔于
孟德尔(grreor johann mendel或johann gregor mendel,1822—1884,gregpr这 个名字是他成为神父时由天主教会赐予的)出生于奥地利西里西亚,父母是贫苦农民。 他有时被描述为“隐居的僧侣”,然而他根本不是;虽然他在布隆(现为捷克的布尔诺) 从事遗传实验研究时在知识交流上实际是与世隔绝的。孟德尔在中学时受到非常良好的 教育,最后又在维也纳大学学习两年了(1851-1853)以便取得在中学教物理和其它自 然科学的资格。因此他实际上是在维也纳当时的一些著名物理学家和生物学家指导下受 过良好训练的年轻科学家。特别重要的是他的植物学教授温格于1852年在教学中采用了 一种进化学说,其中包括自然种群中的变异体随后产生变种和亚种一直到最后其中最特 殊的就达到种的层次的见解(见第八章 )。因此他实际暗示了研究变种是解决物种起源 的关键。这一观点显然对他的学生孟德尔的影响极大。十分重要的是,和达尔文的情况 相仿,正是由于物种问题激发了孟德尔从事遗传研究;这和德国的胚胎学家及细胞学家 正好相反,他们的基本兴趣在于发育生理。在孟德尔著名的1866年文章中他隆谈到他耗 费大量时间进行的试验是必要的,为的是“解决一个问题,这个问题与生物的进化史有 关,它的重要意义决不能低估。”他显然是要通过试验来检验温格的学说,这就意味着 要研究变种。
由于孟德尔从进化角度进行研究,所以正如thoday(1966)所正确指出,他采取了 种群分析方法而不是功能分析中传统的单个个体的研究方法。他分析的是生物后代的大 种群,因为他充分意识到“必须毫无例外地观察每一世代中一系列后代的所有成员” (1866:4)。他实实在在地分析了成千上万的种子和植株,他的试验要求在八个种植 季节中连续进行。我们对孟德尔各方面情况的了解都表明他十分严谨,非常注意细节。 他对气候、太阳黑子以及其它变化无常的现象都作了详尽记录并热衷于数量关系。这些 都十分理想地注定了由他来对遗传问题进行种群分析研究。
对孟德尔取得成功具有决定性意义的是他在物理学和生物学方面都接受了严格训练 (在生物学上可能更是如此)。他所尊敬的中学老师是一位物理学家,而且在他自己的 教学工作中物理学似乎是他的主课。在维也纳他受业于著名的物理学家和数学家多普勒 (c.j.doppler,1803-1853)及其它物理学家,他还在维也纳大学物理学院当过一 段时期的实验示教工作人员。这些经历必然会训练他对实验作详细记录,作数值概括, 进行初步的统计分析。当然,这些对种群分析是特别合适,实际也是必需的。因此,他 的概念(种群,进化)虽然来自生物学,他的大多数研究方法却来源于物理学。
由于孟德尔对植物学文献非常熟悉,特别是他对伽登勒(见第十四章 )的文章有透 彻的了解,他十分清醒地认识到在他的试验中选择恰当(种类)的植物至关重要:
如果从一开始就希望一切成功的可能性不致丧失就必须极其仔细地为这种试验选择 植物的种类。
试验植物一定要
(1)具有固定的不同特征。
(2)在花期中它们的杂种必须加以保护以避免一切外来(非本身)
花粉的影响.或者它们本身容易提供这样的保护。
(3)在连续的世代中杂种和它们的后代的生育力不应当明显下降
(mendel,1866)。
考虑到孟德尔的概念框架中的重大弱点(他对物种是什么很不清楚)这最后一项极 其重要。他将他所杂交的“类型”(forms)有时当作是种、亚种或变种,因为“无论 怎样说,在分类系统中指定给它们的等级在我的试验中完全无关重要,正象不可能在物 种和变种之间划出一条明确的分界线一样,在物种的杂种和变种的杂种之间也同样不可 能确定一种根本差异”(5页)。
实际上,就象克尔路特从直觉上比孟德尔了解得更清楚的那样,确实有很大的差异。 种群内变异体之间的差异一般是单基因差异,显示简单的孟德尔式分离;而物种间的差 异往往是多基因的,不能干净利落地分离。
孟德尔只要切实地遵从他上述的第三项原则,他就不会遇到麻烦。在试验的后期由 于试验豌豆遭到虫灾(豌豆象蛱,bruchus pisi)成片死亡,不可能继续进行豌豆研究, 他便转用其它试验材料。这样一来就使孟德尔陷进了极其复杂困难的局面,而且似乎要 毁掉他以前发现的普遍意义。好在他于1856年选用了豌豆(pisum sativum)和亲缘相 近的物种作为试验材料,因为自从andrew knight以来很多植物育种家已经了解豌豆具 有很多优点。
由于孟德尔拿不准物种是什么,因而他在使用“杂种”这词时也就不加区别,既指 真正的物种杂种,有时又指的是单基因的杂合体。虽然孟德尔偶尔也把他自己称为植物 育种家并在文章中经常引用克尔路特,伽特勒以及其它植物育种家的言论,但是他根本 不属于这一传统。作为温格的学生和研究进化问题的学者,孟德尔所关心的是单性状差 异而不是象植物育种家那样关心的是物种本质。充分的了解这一点在解释孟德尔的研究 工作上十分重要。说孟德尔的概念框架和杂交家的完全相同是根本错误的。正是由于背 弃了杂交家的传统才构成了孟德尔思想的特征,这也是他的最伟大贡献之一。
孟德尔研究工作另一个值得注意的方面是运用假说-演绎法。他的试验全部设计、 方法的说明以及试验材料的选择只能用他在试验的早期思想中已经有了一个构思完整的 学说而他的试验实际上就是为了检验这一学说来解释。因此他的研究路线既和早期的育 种家如伽登勒十分不同,又和内格里等的路线迎然有异。伽登勒采取的是归纳法,虽然 他的试验结果堆积如山却无法得出任何结论;内格里等人虽然有丰富的想象力长于推论, 但从来没有打算去检验他们的推论是否正确。当然,假说-演绎法并不是由孟德尔首创; 从18世纪以来有远见卓识的科学家、包括物理学家和生物学家都采用过这种研究方法, 达尔文和许耐登就是典型例子。
就其实质来说,孟德尔学说认为对于每一可以遗传的性状植物能产生两种卵细胞和 两种花粉粒,各自代表父本性状或母本性状(如果它们是不相同的),或者换句话说, 在受精卵中每一性状由两个(不多于两个)遗传要素(因子)表示,一个来自母本(雌 配子),一个来自父本(雄配子)。关于孟德尔以及早期的孟德尔主义者究竟在多大程 度上是这样想的还明显有争议。
这个学说在孟德尔头脑中究竟是什么时候形成的我们将永远也不会知道,因为孟德 尔的大量笔记和手稿在他晚年或去世后都已被烧掉。我们只能猜测。这学说很可能是在 1859年前后经过一些初步的育种工作以后在孟德尔头脑中萌芽的,在深入的育种研究后 期就牢牢地植根于孟德尔的思想中。
孟德尔的发现
孟德尔从几个种子商收集到34种多少不同的豌豆变种并对之进行了为期两年的检验。 在这些变种中经过自花受粉有22个变种保持不变,他在全部试验期内将这些不变的变种 每年加以培育。从这22个变种中他挑选七对对比(不同)性状进行试验检验。将某一对 指定性状不相同的两个植株加以杂交并在随后的世代中追踪观察这一指定性状的行为 (表现)。这22个变种彼此之间的差异远远超过了所挑选的七对性状,但是孟德尔发现 其它性状并不合用因为它们或者产生连续的或数量变异不宜于研究明确的分离现象,或 者它们并不独立地进行分离。
孟德尔挑选的性状如下:
(1)成熟种子(子叶)是圆润的还是起皱的;
(2)成熟种子是黄的还是绿的;
(3)种皮是白的还是灰的;
(4)成熟豆荚是光滑饱满的还是在豆粒(种子)之间发生收缩并多少起皱的;
(5)未成熟豆荚是绿色的还是鲜黄的;
(6)是腋花还是顶花;
(7)茎是长的(6-
现在每一个生物学学生对孟德尔的发现都很熟悉。他选择了七对性状,每一对中有 一个总是明显的显性。因此在他的所有试验中第一代杂种种群(f1)是一律相同的,和 双亲之一的性状一致。例如,显性是圆的种子,黄色种子、灰色种皮,未成熟豆荚呈绿 色,长茎等等。孟德尔对第一代杂种中某一性状占优势采用了“显性”(dominierend) 这词,对另一性状使用了“隐性”(recessiv)这词。martini和sageret也可能独立地 使用过同样的名称。
当f1杂种自花受粉时产生的f2代隐性性状重新出现。就种子形状来说,从253个自 花受粉的植株所收集的7324粒种子中,5474粒是圆的,1850粒是皱的,比值为2.96:1。 就种子颜色而言,从258个杂种植株收集的8023粒种子中6022粒是黄色的,2001粒呈绿 色,比值为3.01:1。孟德尔将第一代杂种杂交的结果归纳如下:“在这一代中伴随着 显性性状隐性性状也重新出现并完全表达出来,它们的出现肯定是一般按3:1的比例, 因此在这一代的每四个植株中,三株是显性,一株是隐性性状”。
孟德尔并没有就此止步,他将f2代的大量植株自花受粉产生f3代。在圆对皱种子的 试验中(在几代中得到75%的圆种子,25%的皱种子)他受瑰从皱种子培育出的所有植 株在这一性状上是纯一传代(bred true)。从圆种子长出的植株在f3代发生分离。从 圆形种子培育出的565个植株中,193个只产生圆形种子,因而对这一性状是稳定不变的; 然而372个植株既产生圆形种子又有皱种子,比例为3:1。换句话说,在圆形种子中对 这一性状有三分之一是纯一传代,王分之二是既有圆的又有皱的种子。孟德尔的大多数 试验是经过四代到六代,结果都相同。他显然发现了一种定律式的规律性。
孟德尔是怎样解释他的发现呢?遗传型和表现型之间的区别还是在大约50年之后才 弄清楚,泛子、基因、染色体和其它细胞和细胞核成分的概念还没有提出。在没有这样 一些事实和概念的支持下如果孟德尔在1865年就从一无所有中创立了全部孟德尔遗传学 那将真是一个奇迹。他并不是这样。然而按达尔文和魏斯曼的观点来解释他的发现却是 很自然的,正像德弗里、科仑斯和贝特森在读到孟德尔的文章时就是自动地这样做的。 他们都没有怀疑孟德尔的优先权(priority)。这一“荣誉”只有留给历史学家。olby (1979)近来提出“孟德尔不是孟德尔学派”。这一说法是否正确就要看怎样给“孟德 尔学派”下定义。如果要求承认认1900年到1915年所作出的全部遗传学研究成果或发现, 那么孟德尔确实不是孟德尔学派。他并没有为基因定名,也没有把它们安排在一定的基 因座(位点)。在他的大多数文章中他都按特殊的语言(词句)表示遗传性状,这和贝 特森用“单位性状”(unit character)表示遗传性状很相似,分不清表现型和遗传型 的人都会如此。
考虑到孟德尔当时并不了解细胞学的任何发现(大部分细胞学发现都在19世纪70年 代和80年代),他是怎样设想性状在雌配子和雄配子(keim und pollenzellen)中运 输的?他假定“相同的或不同的因子”(gleichartige oder differierende elemente) 代表性状。他没有指明这些因子是什么(在1865年谁又能做到这一点!)但是认为这一 概念十分重要因而在他的《植物杂交试验》(1865)一文中的41-42页中不下十次的提 到这些“因子”。很明显这些“因子”就相当于现在所说的基因。孟德尔和后来的遗传 学解释所不同的是他认为相同因子和不同因子的下落不同。他以为如果它们没有差别 (相同),则雄配子和雌配子的异体同型因子在受精后将完全融合。这就是为什么在f2 代中他写的是a和a而不是aa和aa的理由。如果因子不相同,他认为杂种植株中的配对将 只是暂时的,在杂种植株形成配子时又会溶解(1866:42)。
孟德尔将他的关于因子的行为和特征的“假说”(用他的话)归结如下:“使两个 植株能互相区别的性状归根到底只能由因子的不同组成和不同组合决定;这些因子是以 动态的互相作用方式存在于它们的起源细胞中”(stern and sherwood英译本,1966: 42)。
olby及其同事的正确方面在于否定了孟德尔,到明确认识等位基因对在配子形成时 准确地分开这一点,而这一设想在遗传学家之中以及我本人都是普遍接受的。孟德尔对 相同因子通过融合相结合的论点就反证了这种说法。孟德尔对菜豆属(phaseolus)杂 交种多基因颜色遗传的描述也证明他当时并不了解等位基因的基因座概念;他在描述中 将同时存在的特征a1、a2都用相同的隐性特征、a表示。按现代命名法规这两个独立基 因座上的隐性基因是不同的,应当分别用a1、a2表示。
那么为什么柯仑斯、德弗里和贝特森都一致认为孟德尔在发现孟德尔主义上拥有优 先权?正如柯仑斯简洁扼要指出的,主要理由是因为在前3o多年细胞学研究基础上以及 德弗里(1889)和魏斯曼(1892)对遗传现象加以理论化之后,3:1这个比值只能用假 定当配子形成时相同性状的“原基”(anlagen)发生了1:1的分离来说明。实际上这 就是孟德尔几乎要提出但又没有提出来的论点。他对“有差别的特征” (differierende merkmale)确实提到过这一点(1866:42),而对“相同特征” (gleichartigenmerkmal)他只提出每个特征必须表现在配子中。孟德尔本人从来没有 明确讲过它们在配子中只由单个因子表现,但是如果不是这种情况,则3:1这个比值就 不会像定律似的那样普遍出现。在1900年时由于细胞学和遗传学知识的大大扩展,孟德 尔的重新发现者立刻一致认为这是理所当然的事。除3:1这一比值外他们别无选择的余 地。
olby以及近年来对孟德尔所作贡献的性质表示怀疑的人在坚持孟德尔在创立全部现 代遗传学说上并不是一蹴而就的看法还是对的。孟德尔并没有提出基因学说,正如olby (1979:58)所正确地指出的那样,他的重新发现者也是如此。然而孟德尔的许多发现 (分离,不变的比值,性状的自由组合),连同1865-1900之间所获得的新见识使得人 们不由自已地、也是合情合理地将之称为孟德尔学说。孟德尔对单组性状所得出的比较 重要的结论是:
(1)显性基因和隐性基因在杂合体中互相结合时并不互相影响。既使将圆豆豌豆 与皱豆豌豆杂交一百代,圆豆豌豆仍然像原来那样是圆豆,皱豆豌豆也如此。
(2)配子总是只含有两种原基中的一种性状。不论是由杂合体或纯合体产生的配 子都如此。很明显,亲代特征的定子(因子)在配子形成前业已分离。这就说明了育种 者所熟知的分离现象和重组现象。
(3)植株产生成千的卵细胞和上百万的花粉粒(就动物来说就是精子),具有不 同基因的配子的会合完全是机遇。当采用的样品数量少时就会出现与3:1值发生偏离的 结果,但是偏差范围在统计上是可以预测的。
在孟德尔杂交试验的设计上很重要的一点是他坚信(他已通过实验验证)“显花植 物的繁殖是由一个卵细胞和一个花粉细胞结合成单一的细胞开始”(1866:41)。在受 精作用中只需要一个花粉粒参与这种见解的根据是amici及其它植物学家的研究结果, 而孟德尔则显然是从他的老师温格那里知道的(温格的著名植物解剖学和生理学教科书 在当时影响很大,他还发表过一些有关植物繁殖的文章)。达尔文从育种者那里知道卵 细胞同时由几个雄配子授精并对之深信不疑,这对他来说无疑是一个极大的障碍。
孟德尔在取得了这一新见解后便将之运用到包括两对性状的杂交试验中去。例如他 发现当具有圆形黄色种子的植株与具有皱形绿色种子的植株杂交时,在几代中有四种不 同的组合。在某个杂交试验中得到350粒圆黄、108粗圆绿、101粗皱黄、32粒皱绿的种 子,很接近预先设想的9:3:3:1比值。结论是明显的:每一性状是独立遗传的,与其 它性状无关;显性与隐性的比值不受其它性状影响(1866:42)。后来,孟德尔还进行 了包括三对性状的杂交试验,证明它们也都是独立遗传的。
孟德尔特别注意个别性状及其在随后世代中的行为(表现)并由此作出了一些概括 性结论。他归纳出“不同性状组合定律”,即现在称为“性状自由组合”(的规律)。 柯仑斯将之表述如下(correns,1900:98):“在杂种个体的配子中亲代每个性状的 原基以各种可能的组合形式出现,但是在单个配子中绝不会有一对性状的原基。每一种 组合以大致相同的频率出现。”这是不言而喻的,但是必须特别强调的是一切遗传定律 只有在父本和母本的遗传素质(基因组成)彼此不同时才能显示其作用。这论证了遗传 现象的两个重要因素;第一,双亲的贡献相等;第二,保持因子的完整性(在随后的世 代中不致融合)。孟德尔在给内格里的信中强调了这一点:“我倾向于认为豌豆亲代性 状在其杂种后代中的分离是完全的,因而是永久的……我从来没有观察到亲代性状之间 的逐步过渡,也没有见到逐渐地趋近于其中之一”(correns,1905)。
当孟德尔采样的数量较小时,他发现了一些与预期的3:1比值严重偏离的结果。他 充分觉察到这种采样误差的统计学性质,为了补整这样的误差,在还没有检验显著性的 统计学方法的年代里,他只有在杂交试验中培育大种群。菲雪(fisher,1936)曾提出 孟德尔的试验结果是不是“太好了”的疑问,因为他说用卡方检验计算误差比预期的小。 然而从试验本身的证据以及孟德尔勤奋严谨的科学态度完全有理由相信他的试验结果完 全不是蓄意弄虚作假。孟德尔可能将少数特别不正常的杂种放弃,认为是由异源花粉造 成的;也有可能他一再重复某一杂交试验直到数值达到预期的比值,而没有意识到这样 就将偏见引进了他的方法中。然而最有可能引进偏见的倒是在成熟时花粉是以四合花粉 的形式产生的,这一情况、尤其是在白花受粉而花粉数量有限时,就可能出现“太好了” 的结果。另外,如果孟德尔的试验植物只有十分之八、九发芽(在这类试验中通常如 此),这就会使菲雪的卡方计算失效,孟德尔的结果就会与其它的豌豆杂交家的结果一 致(weding,1966;orel,1971)。因此孟德尔的数字并没有什么真正的大毛病,事实 上孟德尔几乎是一个学究式的数据精确记录者,他在气象学方面的研究也证明了这一点。
孟德尔最重要的贡献
遗传学在重新发现了孟德尔的研究工作以后的几乎爆发似的发展表明孟德尔的发现 必然有某种重要的部分使30多年挣扎在错误的或至少是不成熟的臆想中的遗传学重新起 步。这重要的部分是什么?
显性,回复,正反交的同一性,第一代杂种的一致性以及第二代的变异性等等在孟 德尔以前已经有很多学者阐述过(zirkle,1951)。孟德尔所提出的有某些因子控制性 状这一点在1900年也并不是新鲜事。这基本上就是达尔文的微芽学说和德弗里的泛子学 说。否定融合遗传也不是孟德尔的重要贡献。首先,他本人就相信“相同因子”的融合, 更重要的是德弗里和魏斯曼也至少部分地相信颗粒遗传。然而在最后根除融合遗传的影 响上孟德尔确实作过重要贡献。他强调如果来自父本和母本的因子是不同的,它们绝不 会融合而是在形成生殖细胞时必然会重新分离。这和他后来提出“相同因子”在受精后 同样保持分离状态只差一步。遗传因子在种质中的这种独立性和分隔存在大大促进了硬 式遗传的确立。我在前面曾经强调虽然孟德尔所采用的方法受物理学影响极大,他的概 念框架却是由生物学提供的。和物理主义者(his,loeb,bateson,johannsen)不同, 就孟德尔来说遗传不是由于力或激发而是由于母体卵细胞和父本花粉细胞提供的具体物 质。遗传的基础是所传递的亲本物质的性质。从海克尔(1866)和达尔文(1868)以来 这是一切研究遗传问题的博物学家和整体生物生物学家的一致假定。
那么孟德尔究竟作出了什么突出贡献?当我们把他的遗传学说和达尔文、高尔敦、 魏斯曼和德弗里(1889)等人的遗传学说仔细加以比较,就可以发现有两点主要区别。 首先,所有这些早期学者都主张在每个细胞(每个细胞核)中对应于某一单位性状存在 着无数完全相同的决定因子,并都同样推论每一决定因子的许多复制物可能同时传递给 生殖细胞。如果情况果真如此,在杂交中就不会出现一贯不变的比值。这一假定使明确 透彻的遗传学说的建立与发展几乎不可能。3:1比值的普遍性驳斥了“多重微粒” (multiple-particle)主张。它只符合单个微粒假定。这是孟德尔的最重要贡献。孟 德尔的其它重要贡献是发现了这些微粒是成套存在,用今天的话来说就是以基因及其等 位基因的成套形式存在。通过这一假说可以解释分离现象和重组现象。他推论每个性状 在受精卵细胞中由两个而且仅仅是两个因子表示,其中一个来自父本,另一个来自母本, 而且它们可以不相同。这是一个引起遗传学革命的新观点。孟德尔提出了一个非常简单 的学说,任何业余爱好者都很容易对指定的一套可供选择的性状加以检验。实际上它是 如此简单,现在一些中学生都在从事这一类试验。孟德尔的这一简单概括为19o0年以后 的遗传学发展奠定了基础。
孟德尔的重新发现者在议论孟德尔的三定律:(1)分离定律,(2)显性定律, (3)自由组合定律时在一定程度上掩盖了孟德尔发现的真正实质。
当然,f2代的表现型分离现象早在孟德尔以前从克尔路德,knisht,sageret以来 就被许多学者发现。但是它在其它任何人的研究工作中都不象在孟德尔工作中那样占有 重要地位而且以往也没有将之运用于遗传物质本身(“die elemente”)。强调分离是 抵销融合遗传影响的有效方法。然而单是分离还并非孟德尔主义的精髓。如果某一性状 由多个因子决定(在1900年以前除了孟德尔以外人人都相信这一点),就会有比值不是 3:1的分离现象。孟德尔学说中的关键是他坚持这样的一点:当父本和母本有某个性状 不相同时,则决定这一性状的因子或原基在杂种中保持分离状态,并在这些杂种的生殖 细胞形成时再一次分离。这无疑是孟德尔的决定性贡献之一,另一个是他根据3:1这个 比值推断在生殖细胞中每一个性状是由一个而且只能是一个因子表示。
下面我们即将了解显性并不是一个“定律”。由于孟德尔的精心选择,他选用的七 对性状显然都是显性。
最后,自由组合也不是一个有充分根据的“定律”,因为在1900年以后不久就发现 性状可以通过它们的决定因子在同一个染色体上“连锁”起来(见第十七章 )。在孟德 尔主义的早期,孟德尔“定律”可能在教学上是一种有效的办法,但是它们目前已失去 作用并且已被其它概括代替。
孟德尔的研究为什么被忽视
孟德尔的文章明确流畅,他的学说简单质朴,而且发表的时间(1866)正是迫切需 要这种学说的时候,因而他的工作为什么长期完全被忽视确实是一个费解的谜。说世界 还没有作好接纳它的准备这种肤浅的答案根本就不是什么答案。如果孟德尔作好了准备, 那么别的人又为什么没有。这个问题十分重要,它表明思想史中的某些基本原则应当更 加仔细地进行研究。孟德尔的工作长期被忽略的可能原因是什么?
首先,当然是孟德尔发表的著作极少。从1856年他开始研究到1871年停止杂交选育 的这十几年中他必定积累了大量数据资料,但是他只在布隆博物学会发表过演说和另一 篇短文章(山柳菊的杂交试验,1870年)。说得委婉一点,孟德尔并不是一个多产作家。 从他和内格里的通信(stern and sherwood,1966)可以了解他发现用豌豆进行试验的 结果被他于1869年采用一年生紫罗兰与无毛紫罗兰、玉米、紫苿莉进行的杂交试验完全 证实。这还是在“不发表就湮灭”这谚语流行之前很久的时候,孟德尔并没有向世界介 绍他以往的发现得到这些试验证实的信息,而他以前的发现也只是在上述学会会刊上发 表。
载有孟德尔新发现的布隆学会会刊被寄往115个单位的图书馆,包括英国皇家学会 和林奈学会。孟德尔自己保存了40份这篇文章的复制品。后来我们知道除了别的学者以 外,他还将之寄给两位知名的植物学家:a.kerner von marilaun(他以移植试验而闻 名)和内格里(当时的著名植物学家之一,孟德尔认为他是植物杂交的专家)。自此以 后孟德尔即经常与内格里通信,可惜只有孟德尔的信被保存了下来。内格里显然并不了 解孟德尔的论点,而更可能的倒是反对他的论点。内格里不仅没有鼓励孟德尔反而是适 得其反,他并没有介绍孟德尔在有名的植物学杂志上发表他的结果以便引起更多的人注 意。反之,他却让孟德尔采用山柳菊(hieracium)进行试验来检验其遗传学说,现在 了解山柳菊属植物中单性生殖(无配生殖)很普遍,使试验结果和孟德尔的学说不一致。 简革税来,正如一位历史学家所说,“孟德尔和内格里的交往完全是一场灾难”。内格 里在1884年出版他的关于进化与遗传的名著时,在其中讨论杂交试验的篇幅很多的一章 中完全没有提到孟德尔。这简直是不可思议的因为这一章 中的其它内容比孟德尔的工作 逊色得多。是不是因为内格里轻视这位远在摩拉维亚的天主教神父?还是仅仅由于内格 里气量偏狭?很可能是后者。过去很少提到内格里是赞同纯粹融合遗传学说的少数生物 学家之一(mayr,1973:140)。内格里认为在受精时父本和母本的异胞质由于同种分 子团(micelles)融合成一单股而融合。对内格里来说,承认孟德尔学说就等于完全否 定了他自己的学说,他没有仔细推敲孟德尔的文章(他本应当这样做)就草率地作出了 孟德尔肯定错了的结论(weinstein,1962)。
孟德尔的谦逊并没有改变他的处境。自从遭到内格里的冷遇后,他再也没有积极地 去和其它植物学家或杂交育种者建立联系或在国内或国际学术会议上发表演说。他将他 七年的、涉及30,000个以上植株的试验研究比作是“一个与世隔离的试验”!
鈿德尔分意识到豌豆的情况是非同一般的简单。这无疑是他选择这一物种作为他的 主要试验材料的原因。后来所发现的几乎一切复杂的染色体遗传现象在孟德尔所使用的 试验植物中都有所表现。以孟德尔当肘所拥有的手段,他肯定会被由连锁、交换、多倍 性引起的复杂现象所难倒。实际上山柳菊属的无配生殖后来就使他寸步难行。因此孟德 尔的发现给人的印象是也许不能适用于各类植物,他本人也说,“只有拥有绝大多数植 物类群的详细试验结果才能作出最后决定”(1866:2)。在这个例子中,孟德尔的态 度很可能受到他的物理学训练的不利影响。物理学家(至少在孟德尔的那个时代)总是 寻求普遍定律。因此,孟德尔所发现的豌豆的“定律”只有在也适用于山柳菊和所有其 它植物时才有效。孟德尔是不是因为他发现这些定律似乎并不适用于某些别的植物也认 为他的豌豆定律无效?
正如我在前面指出,孟德尔的研究方法还有另一个弱点。当他决定了“为豌豆提出 的定律的可靠性还需要证实”(1866:43)之后就转向物种杂交。虽然他认识到这和变 种杂交并不是一回事,然而物种杂交的试验使他没有把握和不愿意积极去改进豌豆试验 的结果,而这本来是应当做的。他特别被原以为是固定不变物种的杂种所困扰。就这一 点而言也并非只有孟德尔一人如此。物种的本质是杂交家所最关心的,在1900年以前孟 德尔的菜豆和山柳菊的物种间杂交试验常被杂交家提到(从内格里到荷夫曼和focke), 而不是他的豌豆变种的比值。
1900年以后相当长一段时间中人们广泛地认为连续变异所遵从的是和孟德尔的遗传 定律完全不同的规律,这可能也是忽视孟德尔研究工作的另一个原因。渐进性的连续变 异在1859年以后被普遍认为是进化论者所关心的唯一的一种变异。
历史学家曾经查证在1900年以前孟德尔的工作曾被人引用12次左右。引用最多也是 最重要的是focke的著名评论性著作《植物杂种》(die pflanzen-misehlinge,1881) 一书。后来凡从事植物杂交的人都参考这本书,在这书出版之后几乎所有提到孟德尔工 作的人都说是从focke的这本书中查到的。但是focke本人根本没有认识孟德尔工作的重 要意义,而且在书中提到时所采取的方式也不会促使人们去参阅孟德尔的原文。
1864年由于严重的虫灾(象岬虫)和其它属植物试验的意外结果孟德尔被迫放弃了 豌豆研究。1871年他被选为他所在的修道院烷长后由于行政事务的纠缠便完全停止了一 切杂交研究。1884年他因肾炎去世,年仅62岁。又经过了16年全世界才意识到他的发现 的伟大意义。
最后还应当提到孟德尔的重新发现者(尤其是柯仑斯)以更先进的细胞学知识在解 释孟德尔的阐述时往往比原文的内容有更多的内涵。heimann和olby在指出孟德尔的阐 述不足的方面也享有应得的声誉。但这丝毫没有降低孟德尔的声望。他们只是指出孟德 尔的学说并不是完壁无暇因而并不像遗传学家们在过去的四分之三世纪中所宣称的那样 能解释一切。heimann和olby的著述使人们比较容易理解为什么孟德尔的工作被忽略达 34年之久。
在孟德尔那个时代对“纯粹”的传递遗传学并不特别感兴趣,原因还不完全清楚。 遗传现象当时只是在与其它生物学现象有关时才被考虑,例如物种问题(以及物种的杂 种问题),环境诱导(以及获得性状遗传),发育时的分化,隔离中物种性状的固结以 及隔离障碍移除后物种性状的削弱(搀杂融合)等等。过去对于如果达尔文读到了孟德 尔的文章将会对他产生什么影响的问题有过不少推测。我同意某些人的意见,他们认为 没有影响,即使有影响也很小。1900年以后还经过了好多年“真正的达尔文主义者” (他们喜欢这样称呼自己)才了解渐进进化和连续变异可以按孟德尔的观点来解释。达 尔文可能也会遇到同样的困难。达尔文知道saseret的工作,但这并没有帮助他去理解 变异。至于达尔文作为一个进化论者所最感兴趣的问题,例如“相关的神秘定律”,生 殖隔离的达成,“遗传型内聚力”的形成等等即使在重新发现孟德尔80年以后我们今天 还仍然知之甚少。
孟德尔在缺乏染色体细胞学知识、魏斯曼的理论分析还没有发表,以及没有受惠于 1865-1900年间很多其它的重要发现的情况下找到了考虑遗传现象的一种新方式,他强 调单位性状的行为并运用这种新见解作出了意义深远的概括结论。他的成就是科学史上 最辉煌的成就之一。孟德尔是一位具有献身精神的科学家,这反映在他向内格里报告他 的发现的热情上(
他的简短论文,《植物杂种试验》,正如curt stern所出色描述的那样,“是人类 思维所取得的伟大胜利之一。它不仅是宣告了通过新的观察和试验方法发现了重要事实。 更确切地说,在最高级的创造性活动上,它将这些事实以概念系统的形式呈现出来,这 就使之具有普遍意义……(孟德尔的名著)将作为科学试验和对数据资料的深遂理解的 范例永世长存”(stern and sherwood,1966:v)。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。