(一)NO/cGMP通路活化过程
前面已对NO/cGMP通路分别对血管纹、支持细胞以及传入、传出神经递质调节进行了描写,本节总结归纳NO/cGMP通路的关键酶在耳蜗内表达及活化过程。此通路的关键酶均定位于耳蜗。分布于耳蜗的一氧化氮合酶(NO synthases,NOS)的亚型是神经元性一氧化氮合酶(neuronal NOS,nNOS)和血管内皮性一氧化氮合酶(eNOS)。其中nNOS定位于内外毛细胞、螺旋神经节细胞及支配内外毛细胞的神经纤维;eNOS则主要定位于螺旋韧带血管的内皮细胞、血管纹血管的内皮细胞上。sGC和cGK-1在螺旋韧带血管和血管纹血管的外皮细胞、Corti器的支持细胞(Hensen细胞、Deiters细胞)螺旋神经节细胞及传出传入神经纤维上表达。
在NO/cGMP系统中有3个关键酶:一氧化氮合酶(NOS)、可溶性环磷酸鸟苷合酶(sGC)和环磷酸鸟苷依赖性蛋白激酶-1 (cGK-1)。NO/cGMP通路的活化过程是:当外界信息分子与其特异受体结合,引起Ca2+内流时,由Ca2+/CaM激活NOS,NOS在黄素腺嘌呤二核苷酸(FAD),黄素腺嘌呤单核苷酸(FMN)四氢生物蝶呤(BH4)及还原型尼克酰胺嘌呤二核苷酸(NADPH)等转氢、转电子体的协同作用下,以L-精氨酸为底物合成NO,NO作为一种气体分子可自由通过细胞膜,其作用范围只与其衰变时间有关。NO通过自由扩散方式透过细胞膜后,与周围细胞胞质内的sGC结合并激活之,活化后的sGC以三磷酸鸟苷(GTP)为底物合成cGMP,后者与cGK-1结合。被激活的cGK-1通过磷酸化过程调节细胞功能(图13-1)。
图13-1 NO/cGMP通路作用过程
NOS有3个亚型,即神经元性一氧化氮合酶(nNOS)、诱导型一氧化氮合酶(iNOS)和血管内皮性一氧化氮合酶(eNOS)。此3个亚型的NOS由于分布的不同,而对机体功能产生不同的调节作用。其中,nNOS主要分布于神经系统,由其产生的NO参与神经递质的释放和神经信号的传递;iNOS则主要分布于肥大细胞等免疫细胞中,所产生的NO是作为强氧化剂来杀灭微生物;而eNOS主要在循环系统中发挥作用,它与扩张血管的激素受体共同表达于血管内皮细胞。当扩张血管的激素与其受体结合时,引起的Ca2+内流可激活eNOS,由此产生的NO可以扩张血管,增加血流量,当由sGC合成的cGMP发挥生理功能后,可被cGMP特异的磷酸二酯酶催化水解,此磷酸二酯酶是Ca2+/CaM依赖性的。当Ca2+浓度增加时,既可促进sGC合成cGMP,又可加强磷酸二酯酶降解cGMP。由此可见,Ca2+在NO/cGMP通路的信息传递过程中发挥着关键作用,它一方面激活NOS产生NO,进而增加cGMP的含量;另一方面又同时激活Ca2+/CaM依赖性的磷酸二酯酶,而下调NO引发的胞内cGMP增高。
(二)精氨酸对Ca2+-ATP酶抑制剂的拮抗作用
我们曾采用全耳蜗灌流术,灌流Ca2+-ATP酶抑制剂,使CAP阈移26dB,然后在灌流Ca2+-ATP酶抑制剂的同时加入L-精氨酸,发现CAP阈移减小了10dB,可见精氨酸通过NO/cGMP通路可部分拮抗Ca2+-ATP酶抑制剂的作用。
Ca2+-ATP酶是细胞排出Ca2+的重要方式,是维持胞内Ca2+平衡的Ca2+泵,且广泛分布于血管纹血管壁的细胞上,通过抑制Ca2+-ATP酶的功能将导致胞内Ca2+快速升高,从而造成内、外毛细胞能量供应减少,使内、外毛细胞因能量缺乏而不能维持正常的细胞内外离子平衡,必将引起CM幅度下降、CAP阈值提高。另外,因EP的正常值反映内淋巴高K+的状态,当血液供应减少时,维持正常EP值的血管纹Na+-K+-ATP酶由于能量供应缺乏,使其排K+功能下降,进而引起EP下降。由于EP的变化引起CM、CAP内环境的变化,故必引起CM幅度下降、CAP阈值提高。
当加入NO的底物——L-精氨酸以激活NO/cGMP通路,由位于血管纹血管内皮细胞内的eNOS催化合成NO,后者通过自由扩散方式进入外周细胞,并与其内的sGC结合生成cGMP,后者则激活cGK-1。活化后的cGK-1通过磷酸化过程抑制Ca2+进入细胞,并促进Ca2+库吸收Ca2+及向细胞外排出Ca2+,使胞内升高的Ca2+浓度降低。Watanabe等发现血管纹血管外周细胞内有粗细不同的平滑肌肌纤维样纤维。当血管外周细胞内Ca2+浓度增加时,足够数量的Ca2+与细肌丝上的肌钙蛋白结合,在ATP的参与下,粗、细肌丝间发生相对位移,引起收缩反应,造成血管管径缩小。此收缩反应的前提是Ca2+浓度高于10-5 mol/L。因cGMP激活的蛋白激酶cGK-1通过磷酸化过程抑制细胞内磷脂酶C,降低磷酸肌醇IP3的含量。这一变化可使细胞内Ca2+浓度下降,肌凝蛋白轻链激酶的活性使降低抑制了肌凝蛋白轻链磷酸化,故改善了由于Ca2+超载造成的血管痉挛。
结果提示,L-精氨酸(NO的底物)通过激活NO/cGMP通路改善病理条件下(胞内Ca2+升高)的耳蜗血液循环,为临床治疗相关的耳蜗疾病提供一个新途径。
总之,第二信使广泛存在于机体,在耳蜗中的第二信使对耳蜗功能的调节起到重要作用,在研究IHC与OHC之间,毛细胞与支持细胞之间的细胞间通讯,探讨第二信使的变化更为有意义。关键是要做一个包括IHC、OHC和支持细胞在内的活体标本,通过共聚焦激光显微镜可观察第二信使的运行传递规律,其次,对于NO/cGMP通路中的NO其双重性必须充分认识,小量的NO起到第二信使的作用,而过量的NO则是氧自由基并产生毒性,在细胞间NO如何平衡调节,是需进一步深入探讨的问题。
(李兴启 贾学斌 侯志强)
参考文献
1 Abbeele TV,Huy PT,Teulon J.Modulation by purines do calcium-activated non-selective cation channels in the outer hair cell of the guinea pig cochlea.Journal of physiology,1996,494(1):77
2 Bortolozzi M,Lelli A,Mammano F,et al.Calium microdomains at presynaptic acive zones of vertebrate hair cells unmasked by stochastic deconvolution.Cell Calcium,2008,44(2):158
3 Bredt DS,Snyder SH.Isolation of nitric oxide synthetase,a calmodulin-requiring enzyme.Proc Natl Acad Sci USA,1990,87(2):682
4 Bredt DS,Hwang PM,Glatt CE,et al.Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450reductase.Nature,1991,351(6329):714
5 Bredt DS,Swyder SH.Transient nitric oxide synthase neurons in embryonic cerebral cortical plate,sensory ganglia,and olfactory epithelium.Neuron,1994,13(2):301
6 Brenman JE,Bredt DS.Nitric oxide signaling in the nervous system.Methods Enzymol,Review,1996,269:119
7 Brenman JE,Chao DS,Gee SH,et al.Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95and alpha1-syntrophin mediated by PDZ domains.Cell,1996,84(5):757
8Chen C.Hyperpolarization-activated current(Ih)in primary auditory neurons.Hear Res,1997,110(1-2):179
9 Cho HJ,Xie QW,Calaycay J,et al.Calmodulin is a subunit of nitric oxide synthase from macrophages.J Exp Med,1992,176(2):599
10 Coling DE,Schacht J.Second messengers in the cochlea.Acta Otolaryngol,1995,115(2):218
11 Crouch JJ,Schultr BA.Expression of plasma membrane Ca-ATPase in the adult and developing gerbil cochlea.Hear Res,1995,92(1-2):112
12 Erostegui C,Norris CH,Bobbin RP.In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.Hear Res,1994,74 (1-2):135
13 Fessenden JD,Schacht J,The nitric oxide/cyclic GMP pathway:A potential major regulator of cochlear physiology.Hear Res,1998,118:168
14 Fessenden JD,Alstchuler RA,Srasholtz AF.Nitric oxide/cyclic guanosine monophosphate pathway in the peripheral and central auditory system of the rat.J Comp Neurol,1999,404(1):52
15 Flock A,Flock B,Fridberger A,et al.Supporting cells contribute to control of hearing sensitivity.J Neurosci,1999,19(11):4498
16 Franz P,Hauser KC.Localization of nitric oxide synthaseⅠandⅢin the cochlea.Acta otolaryngo,1996,116:726
17 Frolenkov GI,Mammano F,Belvantseva IA,et al.Two distinct Ca2+-dependent signaling pathways regulate the motor output of cochlear outer hair cells.J Neurosci,2000,20(16):5940
18 Fuchs PA,Murrow BW.Cholinergic inhibition of short(outer)hair cells of the chick’s cochlea.J Neurosci,1992,12(3):800
19 Gosepath K,Gath I,Maurer J,et al.Charaterizatioan of nitric oxide synthase isoforms expressed in different structures of the guinea pig cochlea.Brain Res,1997,747:26
20 Gossman DG,Zhao HB.Hemichannel-mediated inositol 1,4,5-triphosphate(IP3)release in the cochlea:a novel mechanism of IP3intercellular signaling.Cell Commun Adhes,2008,15(4):305 21Heinrich UR,Maurer J,Gosepath K,et al.Immunoelectron microscopic localization of nitric oxide s synthaseⅢin the guinea pig organ of cortic.Eur Arhtorhinolaryngol,1998,255(10):438
22 Heinrich UR,Selivanova O,Feltens R,et al.Endothelial nitric oxide synthase upregulation in the guinea pig organ of Corti after acute noise trauma.Brain Res,2005,1047(1):85
23 Inagaki A,Ugawa S,Yamamura H,et al.The CaV 3.1T-type Ca2+channel contributes to voltage-dependant calcium currents in rat outer hair cells.Brain Res,2008,1201:68
24 Jagger DJ,Ashmore JF.Related Articles,Links The fast activating potassium current,I(K,f),in guinea-pig inner hair cells is regulated by protein kinase A.Neurosci Lett,1999,263(2-3):145
25 Jones EM,Gray-Keller M,Fettiplace R.The role of Ca2+-activated K+channel spliced variants in the tonotopic organization of the turtle cochlea.J Phsiol,1999,518:653
26 Kass GE,Duddy SK,Moore GA,et al.2,5-Di-(tert-butyl)-1,4-benzohydroquinone rapidly elevates cytosolic Ca2+concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+pool.J Biol Chem,1989,264(26):15192
27 Kazuhiko N.Effect of endoplasmic Ca2+-ATPase inhibitors on cochlear potentials in the guinea pig.Acta otolaryngol(stockh),1998,118:198
28 Kurenny DS,Moroz LL.Modulation of ion channels in rod photoreceptors by nitric oxide.Neuron,1994,13(2):315
29 Lagostena L,Ashmore JF,Kachar B,et al.Prinergic control of intercellular communication between Hensen’s cells of the guinea pig cochlea.J Physiol,2001,531:693
30 Leng G.Related Articles,Links The Davis theory:a review,and implications of recent electrophysiological evidence.Hear Res,1980,3(1):17
31 Leng G.The Davis theory:a review and implications of recent electrophysiological evidence. Hear Res,1980,3(1):17
32 Lloret S,Martinez J,Moreno JJ.Influence of calcium on arachidonic acid mobilization by murine resident peritoneal macrophages.Arch Biochem Biophys,1995,323(2):251
33 Lock A,Flock B,Fridberger A,et al.Supporting cells contribute to control of hearing sensitivity.J Neurosci,1999,19(11):4498
34 Lohuis PJ,Klis SF,Klop WM,et al.Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholea toxin;apharmacological model of acute endolymphatic hydrops.Hear Res,1999,137(1-2):103
35 Mammano F,Bortolozzi M,Ortolano,et al.Ca2+sigmaling in the inner ear.Physiology,2007,22:131
36 Marletta Nitric oxide synthase structure and mechanism.J Biol Chem,1993,15,268(17):12231
37 MatsunobuT,Schacht J.Nitnric oxide/cyclic GMP pathway attenuates ATP-evoked intracgllular calium increase in supporting cells of the guinea pig cochlea.JCOMPAR NEUBIO,2000,423:452
38 Palmer RM,Ferrige AG,Moncada S.Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature,1987,327(6122):524
39 Piazza V,Ciubotaru CD,Gale JE,et al.Purinergic signaling and intercellular Ca2+wave propagation in the organ of Corti.Cell Calcium,2007,41(1):77
40 Pickles JO.Frequency threshold curves and simultaneous masking functions in high-threshold,broadly-tuned,fibres of the guinea pig auditory nerve.Hear Res,1984,16(1):91
41 Pollock JS,Forstermann U,Mitchell JA,et al.Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells.Proc Natl Acad Sci USA,1991,88(23):10480
42 Ramakrishnan NA,Drescher MJ,Sheikhali SA, et al.Molecular identification of an N-type Ca2+channel in saccular hair cells.Neuroscience,2006,139(4):1417
43 Ricci AJ,Fettiplace R.Calcium permeateon of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph.J Physiol,1998,506:159
44 Ricci AJ,Gray-Keller M,Fettiplace R.Related Articles,Links Tonotopic variations of calcium signalling in turtle auditory hair cells.J Physiol,2000,524(Pt 2):423
45 Roberts WM,Jacobs RA,Hudspeth AJ.Colocalization of ion channels involved in frequency presynaptic active zones of hair cells.J Neurosci,1990,10(11):3664
46 Ruan RS,Leong SK,Yeoh KH,et al.Localization of nitric oxide synthase and NADPH-diaphrase in guinea pig and human cochlea.J Hirnforsch,1997,38(4):433
47 Ruth Anne Eatock.Adaptation in hair cells.Annu Rev Neurosci,2000,23:285
48 Schmidt HH,Walter U.No at wark.Cell,1994,78:919
49 Schulte BA.Immunohistochemical localization of intracellular Ca-ATPase in outer hair cells,neurons and fibrocytes in the adult and developing inner ear.Hear Res,1993,65(1-2):262
50 Shen J,Harada N,Nakazawa H,et al.Role of nitric oxide on ATP-induced Ca2+signaling in outer hair cells of the guinea pig cochlea.Brain Res,2006,1081(1):101
51 Stuehr DJ,Marletta MA.Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection,lymphokines,or interferon-gamma.J Immunol,1987,139(2):518
52 Tadashi Doi and Harunori Ohmori.Acetychlione increases intracellular Ca2+concentration and hyperpolarizes the guinea pig outer hair cell.Hear Res,1993,67:179
53 Tian F,Fessenden JD.Cyclic GMP-dependent protein kinase-I in the guinea pig cochlea.Hear Res,1999,131(1-2):63
54 Tu TY,Chiu JH,Shu CH,Lien CF.cAMP me-diates transepithelial K+and Na+trandport in a strial marginal cell line.Hear Res,1999,127:149
55 Wu HH,Willians CV,Mcloon SC.Involvement of nitric oxide in the elimination of a.transient retinotectal projection in development.Science,1994,265(5178):1593
56 Xie D,Hu P,Xiao Z,et al.Submits of voltagegated calcium channels in murine spiral ganglion cells.Acta Otolaryngol,2007,127(1):8
57 Yukawa H,Shen J,Harada N,et al.Acute effects of glucocorticoids on ATP-induced Ca2+mobilization and nitric oxide production in cochlear spiral ganglion neurons.Neuroscience, 2005,130(2):485
58 贾学斌,李兴启,张 瀛.第二信使与耳蜗功能.国外医学·耳鼻咽喉科学分册,2003,27(4):227
59 李兴启,贾学斌,曹效平,等.一氧化氮-环磷酸鸟苷通路对耳蜗灵敏度的调节.中华耳鼻咽喉头颈外科杂志,2006,41(7):532
60 赵立东,李兴启.耳蜗中的ATP和一氧化氮/环磷酸鸟苷途径.中华耳学科杂志,2003,1(2):64
61 张素珍,孙建和,赵承军,等.豚鼠膜迷路积水模型耳蜗Ca2+-ATP酶的变化.中华耳鼻咽喉科杂志,1999,34(1):8
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。