首页 百科知识 黄金分割和黄金矩形的概念

黄金分割和黄金矩形的概念

时间:2023-08-24 百科知识 版权反馈
【摘要】:3.作P2,关于线段AP1中点的对称点P3,则AP3将AP2黄金分割。如此继续利用对称,辗转相割,可以得到一系列的黄金分割点。据统计数字表明,观众最喜爱的宽与长之比为g的矩形画面。人们称这种矩形为“黄金矩形”。黄金矩形有个奇特的性质,如果矩形ABCD是黄金矩形,即DA∶AB=g,在它的内部截去一个正黄金矩形。这个过程继续下去,还可以得到一系列的黄金矩形。

26.黄金分割法

2000多年前,古希腊的柏拉图派学者欧多克斯,首先使用规尺分已知线段为“黄金分割”,他的作法如下:

1.过B点,作BC⊥AB,而且使BC=12AB;

2.连AC;

3.以C为圆心,CB为半径作圆弧,交AC于D;

4.以A为圆心,AD为半径作圆弧交线段AB于P,则P点分AB成黄金分割。

这个作法十分简便,证明也很容易。

这就证明了,P点分AB成黄金分割。

这个作图方法,叫做“黄金分割法”,P点为“黄金分割点”。

辗转分割

设点P1将线段AB分成黄金分割,即

BP1∶AP1=g;

取AB中点O,作点P1关于点O的对称点P2,则点P2有下述重要性质:

1.点P2也将线段AB分成黄金分割。

这是因为:

AP2=BP1,BP2=AP1

AP2∶BP2=BP1∶AP1=g,

所以点P2也分AB成黄金分割

由此可知,每条线段有两个黄金分割点。

2.点P2还分线段AP1成黄金分割。

证明如下:由于BP1∶AP1=g,而AP2=BP1

所以AP2∶AP1=g,这就说明P2分AP1成黄金分割。

3.作P2,关于线段AP1中点的对称点P3,则AP3将AP2黄金分割。如此继续利用对称,辗转相割,可以得到一系列的黄金分割点。

黄金矩形

国外,有位画家举办过一次画展,所有的画面都是不同比例的矩形,有的狭长,有的正方。据统计数字表明,观众最喜爱的宽与长之比为g的矩形画面。人们称这种矩形为“黄金矩形”。

黄金矩形有个奇特的性质,如果矩形ABCD是黄金矩形,即DA∶AB=g,在它的内部截去一个正黄金矩形。这个过程继续下去,还可以得到一系列的黄金矩形。这个美妙的结论,请你自己证明吧。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈