说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。
帕斯卡认识的朋友中有两个是赌徒。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?
这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4。
为什么呢?假定他们俩再赌一局,或者a赢,或者b赢。若是a赢满了5局,钱应该全归他;a如果输了,即a、b各赢4局,这个钱应该对半分。现在,a赢、输的可能性都是1/2,所以,他拿的钱应该是1/2×1+1/2×1/2=3/4,当然,b就应该得1/4。
这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:梅累的分法是对的,他应得64个金币的,赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。
在上述问题中,数学期望是一个平均值,就是对将来不确定的钱今天应该怎么算,这就要用a赢输的概率1/2去乘上他可能得到的钱,再把它们加起来。概率论从此就发展起来,今天已经成为应用非常广泛的一门学科。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
概率论现在已经成了数学的一个重要分支,在科学技术各领域里有着十分广泛的应用。
概率论进一步的发展
帕斯卡、费马和惠更斯以来,第一个对概率论给予认真注意的是雅各布·伯努利。他的《猜度术》一书,包含了大数律的叙述;棣莫弗最早使用正态分布曲线;拉格朗日的贡献在于误差理论。
不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理。拉普拉斯等人的著作还讨论了概率论对人口统计、保险事业、度量衡、天文学甚至某些法律问题的应用。概率论在十八世纪已远不再是只与赌博问题相联系的学科了。
说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。
帕斯卡认识的朋友中有两个是赌徒。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?
这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4。
为什么呢?假定他们俩再赌一局,或者a赢,或者b赢。若是a赢满了5局,钱应该全归他;a如果输了,即a、b各赢4局,这个钱应该对半分。现在,a赢、输的可能性都是1/2,所以,他拿的钱应该是1/2×1+1/2×1/2=3/4,当然,b就应该得1/4。
这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:梅累的分法是对的,他应得64个金币的,赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。
在上述问题中,数学期望是一个平均值,就是对将来不确定的钱今天应该怎么算,这就要用a赢输的概率1/2去乘上他可能得到的钱,再把它们加起来。概率论从此就发展起来,今天已经成为应用非常广泛的一门学科。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
概率论现在已经成了数学的一个重要分支,在科学技术各领域里有着十分广泛的应用。
概率论进一步的发展
帕斯卡、费马和惠更斯以来,第一个对概率论给予认真注意的是雅各布·伯努利。他的《猜度术》一书,包含了大数律的叙述;棣莫弗最早使用正态分布曲线;拉格朗日的贡献在于误差理论。
不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理。拉普拉斯等人的著作还讨论了概率论对人口统计、保险事业、度量衡、天文学甚至某些法律问题的应用。概率论在十八世纪已远不再是只与赌博问题相联系的学科了。
说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。
帕斯卡认识的朋友中有两个是赌徒。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?
这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4。
为什么呢?假定他们俩再赌一局,或者a赢,或者b赢。若是a赢满了5局,钱应该全归他;a如果输了,即a、b各赢4局,这个钱应该对半分。现在,a赢、输的可能性都是1/2,所以,他拿的钱应该是1/2×1+1/2×1/2=3/4,当然,b就应该得1/4。
这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:梅累的分法是对的,他应得64个金币的,赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。
在上述问题中,数学期望是一个平均值,就是对将来不确定的钱今天应该怎么算,这就要用a赢输的概率1/2去乘上他可能得到的钱,再把它们加起来。概率论从此就发展起来,今天已经成为应用非常广泛的一门学科。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
概率论现在已经成了数学的一个重要分支,在科学技术各领域里有着十分广泛的应用。
概率论进一步的发展
帕斯卡、费马和惠更斯以来,第一个对概率论给予认真注意的是雅各布·伯努利。他的《猜度术》一书,包含了大数律的叙述;棣莫弗最早使用正态分布曲线;拉格朗日的贡献在于误差理论。
不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理。拉普拉斯等人的著作还讨论了概率论对人口统计、保险事业、度量衡、天文学甚至某些法律问题的应用。概率论在十八世纪已远不再是只与赌博问题相联系的学科了。
说起概率论起源的故事,就要提到法国的两个数学家。一个叫做帕斯卡,一个叫做费马。帕斯卡是17世纪有名的“神童”数学家。费马是一位业余的大数学家,许多故事都与他有关。
帕斯卡认识的朋友中有两个是赌徒。
1651年,法国一位贵族梅累向法国数学家、物理学家帕斯卡提出了一个十分有趣的“分赌注”问题。这两个赌徒说,他俩下赌金之后,约定谁先赢满5局,谁就获得全部赌金。赌了半天,a赢了4局,b赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分?是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?
这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4。
为什么呢?假定他们俩再赌一局,或者a赢,或者b赢。若是a赢满了5局,钱应该全归他;a如果输了,即a、b各赢4局,这个钱应该对半分。现在,a赢、输的可能性都是1/2,所以,他拿的钱应该是1/2×1+1/2×1/2=3/4,当然,b就应该得1/4。
这个问题可把他难住了,他苦苦思考了两三年,到1654年才算有了点眉目。于是他写信给的好友费马,两人讨论结果,取得了一致的意见:梅累的分法是对的,他应得64个金币的,赌友应得64金币的。
通过这次讨论,开始形成了概率论当中一个重要的概念—————数学期望。
在上述问题中,数学期望是一个平均值,就是对将来不确定的钱今天应该怎么算,这就要用a赢输的概率1/2去乘上他可能得到的钱,再把它们加起来。概率论从此就发展起来,今天已经成为应用非常广泛的一门学科。
这时有位荷兰的数学家惠更斯在巴黎听到这件新闻,也参加了他们的讨论。讨论结果,惠更斯把它写成一本书叫《论赌博中的计算》(1657年),这就是概率论最早的一部著作。
概率论现在已经成了数学的一个重要分支,在科学技术各领域里有着十分广泛的应用。
概率论进一步的发展
帕斯卡、费马和惠更斯以来,第一个对概率论给予认真注意的是雅各布·伯努利。他的《猜度术》一书,包含了大数律的叙述;棣莫弗最早使用正态分布曲线;拉格朗日的贡献在于误差理论。
不过,首先将概率论建立在坚固的数学基础上的是拉普拉斯。从1771年起,拉普拉斯发表了一系列重要著述,特别是1812年出版的《概率的解析理论》,对古典概率论作出了强有力的数学综合,叙述并证明了许多重要定理。拉普拉斯等人的著作还讨论了概率论对人口统计、保险事业、度量衡、天文学甚至某些法律问题的应用。概率论在十八世纪已远不再是只与赌博问题相联系的学科了。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。