先创建一个用来测试的数据库和表,为了让插入数据更快,表中主键采用的是GUID,表中没有创建任何索引。GUID必然是比自增长要快的,因为你生成一个GUID算法所花的时间肯定比你从数据表中重新查询上一条记录的ID的值然后再进行加1运算要少。而如果存在索引的情况下,每次插入记录都会进行索引重建,这是非常耗性能的。如果表中无可避免的存在索引,我们可以通过先删除索引,然后批量插入,最后再重建索引的方式来提高效率。
我们通过SQL脚本来插入数据,常见如下四种方式。
方式一:一条一条插入,性能最差,不建议使用。
方式二:insert bulk
语法如下:
相关参数说明:
方式三:INSERT INTO xx select...
INSERT INTO Product(Id,Name,Price)
方式四:拼接SQL
INSERT INTO Product(Id,Name,Price) VALUES
(newid(),'牛栏1段',160)
,(newid(),'牛栏2段',260)
......
在C#中通过ADO.NET来实现批量操作存在四种与之对应的方式。
运行结果如下:我们会发现插入100w条记录,预计需要50分钟时间,每插入一条记
录大概需要3毫秒左右。
运行结果如下:
插入100w条记录才8s多,是不是很溜。
打开Sqlserver Profiler跟踪,会发现执行的是如下语句:
从sqlserver 2008起开始支持TVPs。创建缓存表ProductTemp ,执行如下SQL。
执行完成之后,会发现在数据库CarSYS下面多了一张缓存表ProductTemp
可见插入100w条记录共花费了11秒多。
此种方法在C#中有限制,一次性只能批量插入1000条,所以就得分段进行插入。
运行结果如下:
我们可以看到大概花费了10分钟。虽然在方式一的基础上,性能有了较大的提升,但是显然还是不够快。
总结:大数据批量插入方式一和方式四尽量避免使用,而方式二和方式三都是非常高效的批量插入数据方式。其都是通过构建DataTable的方式插入的,而我们知道DataTable是存在内存中的,所以当数据量特别特别大,大到内存中无法一次性存储的时候,可以分段插入。
比如需要插入9千万条数据,可以分成9段进行插入,一次插入1千万条。而在for循环中直接进行数据库操作,我们是应该尽量避免的。每一次数据库的连接、打开和关闭都是比较耗时的,虽然在C#中存在数据库连接池,也就是当我们使用using或者conn.Close(),进行释放连接时,其实并没有真正关闭数据库连接,它只是让连接以类似于休眠的方式存在,当再次操作的时候,会从连接池中找一个休眠状态的连接,唤醒它,这样可以有效的提高并发能力,减少连接损耗。而连接池中的连接数,我们都是可以配置的。
来源网址:
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。