首页 百科知识 行人小腿保护(基于-腿型)

行人小腿保护(基于-腿型)

时间:2024-09-30 百科知识 版权反馈
【摘要】:2013年以后,Euro-NCAP要求使用FLEX-PLI行人保护柔性腿型,同时GTR也要求在2013年后使用该腿型。与传统腿型相比,FLEX-PLI腿型的优势在于:车辆前端造型直接决定着行人保护实施对策的难易程度,如果前期造型设计没有充分考虑行人保护性能要求,将会给后期的结构设计和布置带来很大挑战。此外,车辆的造型对小腿区域范围也有较大影响,合理的前脸造型能有效减小小腿碰撞区域。

2013年以后,Euro-NCAP要求使用FLEX-PLI行人保护柔性腿型,同时GTR(全球性法规)也要求在2013年后使用该腿型。与传统腿型相比,FLEX-PLI腿型的优势在于:

(1)采用多段可变形骨骼连接结构;

(2)形状采用类人设计,符合人体腿部形状,变形模式复杂多样,受外界载荷作用后柔性很强;

(3)伤害模式更接近实际人体生物力学响应,测量全面。

车辆前端造型直接决定着行人保护实施对策的难易程度,如果前期造型设计没有充分考虑行人保护性能要求,将会给后期的结构设计和布置带来很大挑战。

车辆造型与行人小腿保护性能相关的参数主要有:发动机前缘参考线距离地面的高度H1、小腿支撑离地高度H2、发动机前缘参考线与保险杠上参考线的水平距离B1、小腿支撑与蒙皮的水平距离B2(见图3.81)。各参数与FLEX-PLI腿型的影响关系如下:

图3.81 小腿保护相关尺寸

发动机前缘参考线与保险杠上参考线的水平距离B1:影响车辆前脸造型特征,B1越小,越有利于控制小腿膝部十字韧带拉长量和股骨弯矩伤害。

小腿支撑离地高度H2:影响车辆前脸下部造型特征,H2越小,越有利于控制腿型的运动姿态,能够有效降低膝部韧带PCL、ACL、MCL及胫骨弯矩伤害;

小腿支撑与蒙皮的水平距离B2:影响碰撞时小腿支撑起作用的时间,B2越小,小腿支撑起作用的时间越早,一般建议B2≤40mm;

前伸吸能结构:前伸吸能结构不仅影响车辆的造型特征,还影响小腿膝关节韧带拉长量,其厚度可根据能量原理和牛顿第二定律计算得出:

得:

式中,E小腿为小腿腿型冲击器动能,m为小腿腿型冲击器质量。

以FLEX-PLI柔性腿为例,m=12.95kg,令a=150g,则由公式(3.90)得保险杠横梁前端面与蒙皮之间的最小可变形空间为:

图3.82 小腿保护相关尺寸

考虑到在碰撞过程中动能并不能被完全吸收,现假设吸收了60%,那么有效吸能空间xΔ应为43.3/0.6=72(mm)。

结构布置时应尽可能将刚度大的零部件(如拖钩、雷达等)布置在小腿碰撞区域内、外。此外,车辆的造型对小腿区域范围也有较大影响,合理的前脸造型能有效减小小腿碰撞区域。如图3.82所示,其采用凸角结构,缩小了120°试验范围。

参考文献

[1]欧洲新车安全等级评价.http://www.euroncap.com/home.aspx.

[2]Test Report,NCAP-KAR-12−017,NEW CAR ASSESSMENT PROGRAM(NCAP),http://www.safercar.gov/Safety+Ratings.

[3]W.A,N.J.Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically[J].International Journal of Impact Engineering,1997,volume 19(5):415−437(23).

[4]Campbell,L K.Energy Basis for Collision Severity[J].Presented at the Third International Conference on Occupant Protection,1974.

[5]Jiang T,Grzebieta R H,Rechnitzer G,et al.Review of car frontal stiffness equations for estimating vehicle impact velocities[J].Department of Civil Engineering,Monash University,2DV Experts Australia Paper Number 439,2003,2(1):1.

[6]Sharpe N,Vendrig R,Houtzager K.Improved design for frontal protection[J].TNO Automot,2001.

[7]Saunders J,Strashny A,Wiacek C.Relationship between Frontal Stiffness and Occupant Compartment Intrusion in Frontal Crash Tests[R].SAE Technical Paper,2008.

[8]Department of Transportation,U S,National Highway Traffic Safety Administration.Consumer information:New car assessment program(Docket No.NHTSA-2006-26555)[J].Federal Register,2008,73(134):40016−40050.

[9]National Highway Traffic Safety Administration(NHTSA).The new car assessment program suggested approaches for future program enhancements(DOT HS 810 698)[S].Washington:U.S.Department of Transportation,2007.

[10]Sun E,Eppinger R,Kuppa S,et al.Development of improved injury criteria for the assessment of advanced automotive restraint systems[M].Washington,DC:National Highway Traffic Safety Administration,1998.

[11]Du Bois P,Chou C C,Fileta B B,et al.Vehicle crashworthiness and occupant protection[J].2004.

[12]Matthew H.Vehicle crash mechanics[J].2002.

[13]Ma Z.D.,Kikuchi N.,Pierre C.,et al.A Multi-Domain Topology Optimzation Approach for Structural and Material Designs[J].ASME Journal for Applied Mechanics,73(4):565−573.

[14]Ma Z.D.,Lui,Y.,Nonlinear Analysis and Design Investigation of a Negative Poisson’s Ratio Material[C].Proc.of ASME 2007 International Mechanical Engineering Congress and Exposition,IMECE07−43665,Seattle.

[15]Ishii K,Yamanaka I.Influence of vehicle deceleration curve on dummy injury criteria[R].SAE Technical Paper,1988.

[16]Brantman R.Achievable optimum crash pulses for compartment sensing and airbag performance[C]//Proceedings:International Technical Conference on the Enhanced Safety of Vehicles.National Highway Traffic Safety Administration,1993,1993:1134−1138.

[17]Matsumoto H,Sakakida M,Kurimoto K.A parametric evaluation of vehicle crash performance[R].SAE Technical Paper,1990.

[18]Grimes W D,Lee F D.The effect of crash pulse shape on occupant simulations[R].SAE Technical Paper,2000.

[19]Agaram V,Xu L,Wu J,et al.Comparison of frontal crashes in terms of average acceleration[R].SAE Technical Paper,2000.

[20]Motozawa Y,Kamei T.A new concept for occupant deceleration control in a crash[R].SAE Technical Paper,2000.

[21]Cao J Z,Koka M R,Law S E.Vehicle pulse shape optimization to improve occupant response in front impact[R].SAE Technical Paper,2004.

[22]Kral J.Yet another look at crash pulse analysis[R].SAE Technical Paper,2006.

[23]Mark S.Effect of frontal crash pulse variations on occupant injuries[C]//Proceedings:International Technical Conference on the Enhanced Safety of Vehicles.National Highway Traffic Safety Administration,2003.

[24]Varat M S,Husher S E.Crash pulse modelling for vehicle safety research[C]//Proceedings:International Technical Conference on the Enhanced Safety of Vehicles.National Highway Traffic Safety Administration,2003.

[25]Witteman W J,Kriens R F C.The necessity of an adaptive vehicle structure to optimize deceleration pulses for different crash velocities[C]//Proceedings of the Seventeenth International Technical Conference on the Enhanced Safety of Vehicles (ESV),Paper.2001,320.

[26]Wu J,Bilkhu S,Nusholtz G S.An impact pulse-restraint energy relationship and its applications[R].SAE Technical Paper 2003−01−0505,2003.

[27]邱少波,潘作峰,李红建,张君媛.车体耐撞性概念优化方法.第九届中国汽车安全技术国际研讨会,2006年8月14−16日,北京.

[28]Chang C C,Lin C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology(TIST),2011,2(3):27.

[29]LIBSVM-A Library for Support Vector Machines,http://www.csie.ntu.edu.tw/~cjlin/libsvm

[30]RCAR Bumper Test,Issue 2.0,September 2010,RCAR(Research Council for Automobile Repairs),http://www.rcar.org/Papers/Procedures/BumperTestProcedure.pdf.

[31]Hahm S,Won Y,Kim D.Frontal crash feasibility study using MADYMO 3D frame model[R].SAE Technical Paper,1999.

[32]Wierzbicki T,Abramowicz W.On the crushing mechanics of thin-walled structures[J].Journal of Applied mechanics,1983,50(4a):727−734.

[33]Ibrahim H K.Design optimization of vehicle structures for crashworthiness improvement[D].Concordia University Montreal,Quebec,Canada,2009.

[34]Abramowicz W,Jones N.Dynamic progressive buckling of circular and square tubes[J].International Journal of Impact Engineering,1986,4(4):243−270.

[35]Bare C,Peterson D,Marine M,et al.Energy Dissipation in High Speed Frontal Collisions[R].SAE Technical Paper,2013.

[36]Deb A,Cheruvu K S,Mahendrakumar M S.Energy-Based Criteria for Crashworthiness Design of Aluminum Intensive Space Frame Vehicles[R].SAE Technical Paper,2004.

[37]Huibers J,De Beer E.Current front stiffness of European vehicles with regard to compatibility[J].Cell,2001,1:1.

[38]Swanson J,Rockwell T,Beuse N,et al.Evaluation of stiffness measures from the US new car assessment program[C]//18th Int.Technical Conf.of the Enhanced Safety of Vehicles.2003.

[39]Magee C L,Thornton P H.Design considerations in energy absorption by structural collapse[R].SAE Technical Paper,1978.

[40]Mahmood H F,Paluszny A.Design of thin walled columns for crash energy management— their strength and mode of collapse[R].SAE Technical Paper,1981.

[41]Mahmood H F,Paluszny A.Stability of plate-type box columns under crush loading[J].Computational methods in ground transportation vehicles,AMD,1982,50:17−33.

[42]Wu J,Bilkhu S,Nusholtz G S.An impact pulse-restraint energy relationship and its applications[R].SAE Technical Paper,2003.

[43]Wu J,Nusholtz G S,Bilkhu S.Optimization of vehicle crash pulses in relative displacement domain[J].International Journal of Crashworthiness,2002,7(4):397−414.

[44]Nishigaki H,Kikuchi N.First Order Analysis for Automotive Body Structure Design-Part 3:Crashworthiness Analysis Using Beam Elements[R].SAE Technical Paper,2004.

[45]Zhou R,Fu Y,Kang S.Optimal design of vehicle target pulse and restraint system[J].International journal of vehicle safety,2005,1(1):168−180.

[46]Deb A,Cheruvu K S,Mahendrakumar M S.Energy-Based Criteria for Crashworthiness Design of Aluminum Intensive Space Frame Vehicles[R].SAE Technical Paper,2004.

[47]Motozawa Y,Tsuruta M,Kawamura Y,et al.A new concept for occupant deceleration control in a crash-part 2[R].SAE Technical Paper,2003.

[48]Wierzbicki T,Abramowicz W.On the crushing mechanics of thin-walled structures[J].Journal of Applied mechanics,1983,50(4a):727−734.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈