【摘要】:边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。边缘检测主要基于导数计算,但受噪声影响。而滤波器在降低噪声的同时也导致边缘强度的损失。增强边缘的基础是确定图像各点邻域强度的变化值。但在有些图像中梯度幅值较大的并不是边缘点。最简单的边缘检测是梯度幅值阈值判定。
5.3.1 图像边缘检测的基本步骤
(1)滤波。边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数的计算对噪声很敏感,因此必须使用滤波器来改善与噪声有关的边缘检测器的性能。需要指出的是,大多数滤波器在降低噪声的同时也导致了边缘强度的损失。因此,增强边缘和降低噪声之间需要折中。边缘检测主要基于导数计算,但受噪声影响。而滤波器在降低噪声的同时也导致边缘强度的损失。
(2)增强。增强边缘的基础是确定图像各点邻域强度的变化值。增强算法可以将邻域(或局部)强度值有显著变化的点突显出来。边缘增强一般是通过计算梯度幅值来完成的。增强算法将邻域中灰度有显著变化的点突出显示。一般通过计算梯度幅值完成。
(3)检测。在图像中有许多点的梯度幅值比较大,而这些点在特定的应用领域中并不都是边缘,所以应该用某种方法来确定哪些点是边缘点。最简单的边缘检测判据是梯度幅值阈值判据。但在有些图像中梯度幅值较大的并不是边缘点。最简单的边缘检测是梯度幅值阈值判定。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。