5.6 其他磁敏传感器[1]
其他磁敏传感器是由磁敏电阻器和磁敏二极管、三极管和磁敏MOS器件等磁电转换元件构成的传感器。限于篇幅,下面简要介绍磁敏电阻器和磁敏二极管。
5.6.1 磁敏电阻器
5.6.1.1 工作原理
1.磁电阻效应
将载流导体(金属或半导体)置于外磁场中,不但产生霍尔效应(电势或电场),同时其电阻也会随磁场而变化。这种现象称为磁敏电阻效应,简称磁电阻效应。磁电阻效应的大小,与元件的迁移率和几何形状有关;前者谓之物理磁电阻效应,后者谓之几何磁电阻效应。
对于物理磁电阻效应,通常用磁场引起磁敏电阻率的相对变化表示:
式中:ρB和ρ0分别为有磁场B和无磁场时的电阻率,μ为载流子迁移率。
对于几何磁电阻效应,则要考虑元件形状尺寸的影响,通常用电阻相对变化来表示:
式中:RB、Ro分别为有无磁场B时的元件电阻,l和w为元件的长和宽,θ为磁场作用下载流子运动偏角(霍尔角),Gr为与磁场和元件样品形状有关的几何因子。
图5-18 两种载流子的磁电阻效应图
2.作用机理
产生磁电阻效应的基本机理是磁场改变了导体载流子迁移的路径,致使与外界电场同方向的电流分量减小,等价于电阻增大。因此,为获得显著的磁电阻效应,应选用电阻率和迁移率均大的半导体薄片。具体简析如下:
物理磁电阻效应如图5-18所示,具有两种载流子的P型半导体薄片通电后,当无磁场时,总电流密度j为电子和空穴电流密度jn和jp之和,即j=jn+jp;当外加磁场Bz时,jn和jp在洛仑兹力作用下背向偏转,稳定后合成的电流密度矢量在y向出现了分量,而外电场方向的总电流降低了,相当于电阻率增大,表现出物理磁电阻效应。
受形状影响的磁电阻效应见图5-19所示的三种不同形状的P型半导体样品。图中上面的图为未加磁场时,电流密度矢量与外电场一致;下面图示为外加磁场后产生了横向霍尔电场,使电流密度矢量相对合成电场方向E有一霍尔角θ[见图5-19(d)]。由于在上下金属电极处的合成电场E与金属极面垂直,所以上下极面附近的电流密度出现偏转θ角,由此电流路径增长,电阻增大。由于电阻R(R=ρl/wd)增大与ρ、l、w、d有关,所以,图5-19(a)薄长条形样品的几何磁电阻效应明显,而图5-19(c)被称为科比诺圆盘(Corbino Disk)的样品,因内外圆电极间电阻呈环状,不存在横向霍尔电场和电势,所以磁敏电阻变化更加明显。
图5-19 不同形状样品磁电阻效应图
(a)长方形(l》w);(b)长方形(l≤w);(c)科比诺圆盘
上述两种不同效应的磁敏电阻相对变化与磁场强度关系曲线分别示于图5-20和图5-21。图5-20中符号所代表的材料为D:本征InSb-NiSb;L、M:掺杂InSb-NiSb;P、T:掺杂InSb栅格。
图5-20 不同材料磁敏电阻灵敏度与磁场强度关系曲线
图5-21 不同形状磁敏电阻灵敏度与磁场强度关系曲线
5.6.1.2 结构与应用
由上述可知,应选用ρ和μ均高的半导体制作磁电阻元件;其中以锑化铟(InSb)为最佳。图5-22为栅格结构高灵敏度磁电阻元件示意。它在长方形锑化铟样品上用集成工艺规则地铺设与电流方向垂直的金属条,将样品分成许多小区,相当于许多长宽比很小的电阻串联,大大提高阻值和灵敏度。
图5-22 栅状结构磁电阻器件示意图
磁敏电阻器主要应用于检测磁场强度及其分布,制作无接触电位器、磁卡识别、位移、转速等传感器。下面介绍一种测位移实例。
磁电阻传感器测量位移是利用磁电阻元件与磁场之间相对位移变化导致磁电阻受磁场作用的面积变化这一原理工作的,见图5-23(a)。设未外加磁场B时,RM1=RM2,磁电阻元件A的输出为
图5-23 一种测量位移的磁电阻传感器
当磁铁B由位置1→2→3移动时:
在位置(1),RM1>RM2,Uo=[ERM/(RM1+RM2 )]<E/2
在位置(2),RM1=RM2,Uo2=E/2│
在位置(3),RM1<RM2,Uo3=[ERM2/(RM1+RM2)]>E/2
由上可见,①磁电阻元件输出随磁场位置由上至下而由小变大;②这时的磁电阻RM1和RM2的作用相当于图5-23(b)中无触点电位器。
根据上述原理制成的位移测量传感器如图5-23(c)。两磁电阻接入电桥电路两臂;当磁场相对元件左右移动时,传感器不仅能测量位移的大小,而且能反映位移的方向。
5.6.2 磁敏二极管
1.工作原理
如图5-24所示,磁敏二极管的结构是P+-I-N+型,在高纯度本征半导体的两端,用合金法制成P、N两极区,并在本征I区的一个侧面上打毛,设置高复合r区,使电子和空穴易于复合消失;而r区相对的另一侧面保持光滑,无复合面。这就构成了磁敏二极管的管芯。
图5-24 磁敏二极管的结构
如图5-25(a),当没有外磁场作用时,由于外加正偏压,将有大量空穴通过I区进入N区,同时大量电子通过I区进入P区,从而形成电流,仅有很少的电子和空穴在I区复合。
图5-25(b),当受到正向外磁场H+作用,电子和空穴受洛仑兹力作用向r区偏移,并在r区快速复合消失,使I区的载流子密度减小。电流减小相当于电阻增大,电压增加;由此,加在PI结、NI结上的电压相应减少,这又进而使载流子注入量减少,I区电阻进一步增大,直到某一稳定状态为止。
图5-25(c),当受到反向外磁场H-作用时,电子和空穴背向r区移动,载流子在I区因行程较长,停留时间变长而复合减少,密度增加,即出现与上面相反的情况,直至达到某一稳定状态。
由上可知,输出电压随着磁场大小和方向而变化,特别是在弱磁场作用下,可获得较大输出电压的变化,r区内外复合率差别越大,灵敏度越高。当磁敏二极管反向偏置时,只有很少电流通过,二极管两端电压也不会因受到磁场的作用而有任何改变。
2.工作特性
图5-25 磁敏二极管工作原理图
(1)伏安特性 在给定磁场情况下,磁敏二极管的伏安特性如图5-26所示,开始在较大偏压范围内,电流变化比较平坦,随外加偏压的增加逐渐增加。而后,伏安特性曲线上升很快,表现出动态电阻比较小。
(2)磁电特性 在给定条件下,输出电压变化与外加磁场的关系称为磁电特性。
图5-27给出了磁敏二极管单个使用(曲线a)和互补使用(曲线b)的磁电特性。由图可见,单个使用时正向磁灵敏度大于反向磁灵敏度;互补使用时,正向特性曲线和反向特性曲线基本对称。磁感应强度增加时,曲线有饱和趋势,但在弱磁场情况下,曲线具有较好的线性。
图5-26 磁敏二极管伏安特性曲线
图5-27 磁敏二极管磁电特性曲线
图5-28 磁敏二极管温度特性曲线
(3)温度特性 是指在标准测试条件下,输出电压变化ΔU或无磁场作用时中点电压Um随温度变化的规律。如图5-28所示,可见磁敏二极管的输出特性受温度的影响较大。
硅磁敏二极管零场(B=0)电压Uo的温度系数小于+20mV/℃,ΔU的温度系数小于0.6%/℃。锗的Uo温度系数为负,小于-60 mV/℃的绝对值,ΔU的温度系数小于1.5%/℃。硅、锗管的使用温度范围分别为-40~+85℃和-40~+65℃。
(4)频率特性 指载流子漂移过程中被复合并达到动态平衡的时间,所以频率响应的时间与载流子的有效寿命相当。硅管的响应时间小于1μs,响应频率可达1MHz。锗管的响应频率小于10kHz。
(5)磁灵敏度 在一定的恒压源、负载电阻和正负向磁场B之下,对输出电压的相对磁灵敏度和绝对磁灵敏度分别表示为:
3.磁敏二极管的应用
磁敏二极管比较适合应用在精度要求不高,而能获得较大电压输出的场合;可用于电键、转速计、无刷电机、无触点开关和简易高斯计、磁探伤等。
(1)无刷直流电机
如图5-29,转子为永久磁铁。当接通磁敏管2的电源以后,在转子磁场作用下将输出一个信号给控制电路3。控制电路先接通定子上靠近转子磁极的电磁铁线圈1,使其产生的磁场推—拉转子的磁极,使转子旋转。当转子磁场按顺序作用于各磁敏管,磁敏管信号就顺序接通各定子线圈产生旋转磁场,使转子不停地旋转。无刷电机无噪声、寿命长、可靠性高、抗干扰、转速高。
图5-29 无触点直流电机原理图
1—线圈;2—磁敏管;3—控制电路
图5-30 磁敏二极管探头结构示意图
(2)磁敏二极管漏磁探伤
利用磁敏二极管可以检测弱磁场变化这一特性可以制成漏磁探伤仪。图5-30为由磁敏二极管构成的测量探头。图5-31为漏磁探伤原理图;被测圆钢棒1磁化部分与导磁铁3构成闭合磁路。由激磁线圈2感应的磁通Φ通过钢棒局部表面,若无缺陷存在,探头附近则没有泄漏磁通,因而探头没有信号输出。如果钢棒存在局部缺陷,则缺陷处将有泄漏作用于探头上,使其产生信号输出。所以,根据信号的有无,即可判别钢棒有无缺陷。
图5-31 漏磁探伤原理图
图5-32 探伤仪原理框图
在探伤过程中,应使钢棒不断转动,而探头和磁系统沿钢棒轴向运动,这样就可快速地对钢棒全部表面进行扫瞄探测。探伤仪的原理框图示于图5-32中。
习题与思考题
5-1 阐明磁电式振动速度传感器的工作原理,并说明引起其输出特性非线性的原因。
5-2 试述相对式磁电测振传感器的工作原理和工作频率范围。
5-3 试分析绝对式磁电测振传感器的工作频率范围。如果要扩展其测量频率范围的下限应采取什么措施;若要提高其上限又可采取什么措施?
5-4 对永久磁铁为什么要进行交流稳磁处理?说明其原理。
5-5 为什么磁电式传感器要考虑温度误差?用什么方法可减小温度误差?
5-6 已知某磁电式振动速度传感器线圈组件(动圈)的尺寸如图P5-1所示:D1=18mm,D2=22mm,L=39mm,工作气隙宽Lg=10mm,线圈总匝数为15000匝。若气隙磁感应强度为0.5515T,求传感器的灵敏度。
5-7 某磁电式传感器固有频率为10Hz,运动部件(质量块)重力为2.08N,气隙磁感应强度Bδ=1T,工作气隙宽度为tg=4mm,阻尼杯平均直径DCP=20mm,厚度t=1mm,材料电阻率ρ=1.74×10-8Ω·mm2/m。试求相对阻尼系数ξ=?若欲使ξ=0.6,问阻尼杯壁厚t应取多大?
5-8 某厂试制一磁电式传感器,测得弹簧总刚度为18000N/m,固有频率60Hz,阻尼杯厚度为1.2mm时,相对阻尼系数ξ=0.4。今欲改善其性能,使固有频率降低为20Hz,相对阻尼系数ξ=0.6,问弹簧总刚度和阻尼杯厚度应取多大?
图P5-1
5-9 已知惯性式磁电速度传感器的相对阻尼系数传感器-3dB的下限频率为16Hz,试求传感器的自振频率值。
5-10 已知磁电式速度传感器的相对阻尼系数ξ=0.6,求振幅误差小于2%测试时的ω/ωn范围。
5-11 已知磁电式振动速度传感器的固有频率fn=15Hz,阻尼系数ξ=0.7。若输入频率为f=45Hz的简谐振动,求传感器输出的振幅误差为多少?
5-12 何谓霍尔效应?利用霍尔效应可进行哪些参数测量?
5-13 霍尔元件的不等位电势和温度影响是如何产生的?可采取哪些方法来减小之。
5-14 磁敏传感器有哪几种?它们各有什么特点?可用来测量哪些参数?
【注释】
[1]此节由贾伯年作了改编
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。