首页 百科知识 中国风力机的发展历史

中国风力机的发展历史

时间:2024-10-13 百科知识 版权反馈
【摘要】:人类利用风能的历史可以追溯到公元前。中国是世界上最早利用风能的国家之一。尽管如此,与发达国家相比,中国风能的开发利用还相当落后,不但发展速度缓慢而且技术落后,远没有形成规模。在进入21世纪时,中国应在风能的开发利用上加大投入力度,使高效清洁的风能能在中国能源的格局中占有应有之地。风能利用形式主要是将大气运动时所具有的动能转化为其他形式的能量。

1.5 风能利用历史

人类利用风能的历史可以追溯到公元前。中国是世界上最早利用风能的国家之一。公元前数世纪中国人民就利用风力提水、灌溉、磨面、舂米,用风帆推动船舶前进。到了宋代更是中国应用风车的全盛时代,当时流行的垂直轴风车,一直沿用至今。在国外,公元前2世纪,古波斯人就利用垂直轴风车碾米。10世纪伊斯兰人用风车提水,11世纪风车在中东已获得广泛的应用。13世纪风车传至欧洲,14世纪已成为欧洲不可缺少的原动机。在荷兰风车先用于莱茵河三角洲湖地和低湿地的汲水,以后又用于榨油和锯木。只是由于蒸汽机的出现,才使欧洲风车数目急剧下降。

数千年来,风能技术发展缓慢,也没有引起人们足够的重视。但自1973年世界石油危机以来,在常规能源告急和全球生态环境恶化的双重压力下,风能作为新能源的一部分才重新有了长足的发展。风能作为一种无污染和可再生的新能源有着巨大的发展潜力,特别是对沿海岛屿,交通不便的边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。即使在发达国家,风能作为一种高效清洁的新能源也日益受到重视。

美国早在1974年就开始实行联邦风能计划。其内容主要是:评估国家的风能资源;研究风能开发中的社会和环境问题;改进风力机的性能,降低造价;主要研究为农业和其他用户用的小于100kW的风力机;为电力公司及工业用户设计的兆瓦级的风力发电机组。美国已于80年代成功地开发了100、200、2000、2500、6200、7200kW六种风力机组。

1.5.1 风能路灯

目前美国已成为世界上风力机装机容量最多的国家,超过2×104MW,每年还以10%的速度增长。

现在世界上最大的新型风力发电机组已在夏威夷岛建成运行,其风力机叶片直径为97.5m,重144t,风轮迎风角的调整和机组的运行都由计算机控制,年发电量达1000万kW·h。根据美国能源部的统计至1990年美国风力发电已占总发电量的1%。在瑞典、荷兰、英国、丹麦、德国、日本、西班牙,也根据各自国家的情况制订了相应的风力发电计划。如瑞典1990年风力机的装机容量已达350MW,年发电10亿kW·h。

img119

图5-3 风能路灯

丹麦在1978年即建成了日德兰风力发电站,装机容量2000kW,三片风叶的扫掠直径为54m,混凝土塔高58m,预计到2005年电力需求量的10%将来源于风能。德国1980年就在易北河口建成了一座风力电站,装机容量为3000kW,到本世纪末风力发电也将占总发电量的8%。英国,英伦三岛濒临海洋,风能十分丰富,政府对风能开发也十分重视,到1990年风力发电已占英国总发电量的2%。

在日本,1991年10月轻津海峡青森县的日本最大的风力发电站投入运行,5台风力发电机可为700户家庭提供电力。中国位于亚洲大陆东南、濒临太平洋西岸,季风强盛。季风是中国气候的基本特征,如冬季季风在华北长达6个月,东北长达7个月。东南季风则遍及中国的东半壁。根据国家气象局估计,全国风力资源的总储量为每年16亿kW,近期可开发的约为1.6亿kW,内蒙古、青海、黑龙江、甘肃等省风能储量居中国前列,年平均风速大于3m/s的天数在200d以上。

中国风力机的发展,在50年代末是各种木结构的布篷式风车,1959年仅江苏省就有木风车20多万台。到60年代中期主要是发展风力提水机。70年代中期以后风能开发利用列入“六五”国家重点项目,得到迅速发展。进入80年代中期以后,中国先后从丹麦、比利时、瑞典、美国、德国引进一批中、大型风力发电机组。在新疆、内蒙古的风口及山东、浙江、福建、广东的岛屿建立了8座示范性风力发电场。1992年装机容量已达8MW。新疆大坂城的风力发电场装机容量已达3300kW,是全国目前最大的风力发电场。至1990年年底全国风力提水的灌溉面积已达2.58万亩。1997年新增风力发电10万kW。目前中国已研制出100多种不同形式、不同容量的风力发电机组,并初步形成了风力机产业。尽管如此,与发达国家相比,中国风能的开发利用还相当落后,不但发展速度缓慢而且技术落后,远没有形成规模。在进入21世纪时,中国应在风能的开发利用上加大投入力度,使高效清洁的风能能在中国能源的格局中占有应有之地。

1.5.2 风能利用形式

风能利用形式主要是将大气运动时所具有的动能转化为其他形式的能量。风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了中国南北之间的气压梯度,使空气作水平运动。

(1)季风

理论上风应沿水平气压梯度方向吹,即垂直于等压线从高压向低压吹,但是地球在自转,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球气流向右偏转,南半球向左偏转,所以地球大气运动除受气压梯度力外,还受地转偏向力的影响。大气真实运动是这两力的合力。实际上,地面风不仅受这两个力的支配,而且在很大程度上受海洋、地形的影响,山隘和海峡能改变气流运动的方向,还能使风速增大,而丘陵、山地却摩擦大使风速减小,孤立山峰因海拔高使风速增大。因此,风向和风速的时空分布较为复杂。比如海陆差异对气流运动的影响,在冬季,大陆比海洋冷,大陆气压比海洋高,风从大陆吹向海洋;夏季相反,大陆比海洋热,风从海洋吹向内陆。这种随季节转换的风,我们称为季风。

(2)海陆风

所谓的海陆风也是白昼时,大陆上的气流受热膨胀上升至高空流向海洋,到海洋上空冷却下沉,在近地层海洋上的气流吹向大陆,补偿大陆的上升气流,低层风从海洋吹向大陆称为海风。

img120

图5-4 风能

(3)陆风

夜间(冬季)时,情况相反,低层风从大陆吹向海洋,称为陆风。

(4)山风和谷风

在山区由于热力原因引起的白天由谷地吹向平原或山坡,夜间由平原或山坡吹向谷地,前者称谷风,后者称为山风。这是由于白天山坡受热快,温度高于山谷上方同高度的空气温度,坡地上的暖空气从山坡流向谷地上方,谷地的空气则沿着山坡向上补充流失的空气,这时由山谷吹向山坡的风,称为谷风。夜间,山坡因辐射冷却,其降温速度比同高度的空气较快,冷空气沿坡地向下流入山谷,称为山风。

当太阳辐射能穿越地球大气层时,大气层约吸收2×1016W的能量,其中一小部分转变成空气的动能。因为热带比亚热带吸收较多的太阳辐射能,产生大气压力差导致空气流动而产生风。至于局部地区,例如,在高山和深谷,在白天,高山顶上空气受到阳光加热而上升,深谷中冷空气取而代之,因此,风由深谷吹向高山;夜晚,高山上空气散热较快,于是风由高山吹向深谷。另一例子,如在沿海地区,白天由于陆地与海洋的温度差,而形成海风吹向陆地;反之,晚上由陆地吹向海上。

(5)风的能量

地球吸收的太阳能有1%~3%转化为风能,总量相当于地球上所有植物通过光合作用吸收太阳能转化为化学能的50~100倍。上了高空就会发现风的能量,那儿有时速超过160km(100英哩160km/h100 mph)的强风。这些风的能量最后因和地表及大气间的摩擦力而以各种热能方式释放。

1.5.3 风形成的原因及风能的提取

因太阳照射极地和赤道的不均匀使得地表的不受热;地表温的上升速度较海面快;大气中同温层如同天花板的效应加速了气体的对流;季节的变化;科氏效应;月亮的反射比率,形成了风。

风能可以通过风车来提取。当风吹动风轮时,风力带动风轮绕轴旋转,使得风能转化为机械能。而风能转化量直接与空气密度、风轮扫过的面积和风速的平方成正比。空气的质流穿越风轮扫过的面积,随着风速以及空气的密度而变化。举例来说,在15°C(59°F)的凉爽日子里,海平面空气密度为1.22kg/m3(当湿度增加时空气密度会降低)。当风以8m/s吹过直径100m的转轮时,每秒能够使100万的空气穿越风轮扫过的面积。

指定质量的动能与其速率之平方成正比。因为质流与风速呈线性增加,对风轮有效用的风能将会与风速的立方成正比;本例子中风吹送风轮的功率,大约为250万W。

因为风涡轮提取能量,空气减速,导致它对传播并且在风涡轮附近某种程度上牵制它。德国物理学家阿尔伯特Betz,1919年确定风涡轮可能提取流经涡轮的横断面的59%能量。不管涡轮的设计,Betz极限申请。实际效率从1%~20%为推进器类型涡轮,并且是一样高,像35%为三维垂直轴涡轮像Darrieus或Gorlov涡轮。

2002年在李大农场,设施在科罗拉多有风变化,并且平均值为一个被测量的地点单独不表明风涡轮,可能导致那里的相当数量能量。要估计风速风土学在一个特殊地点,概率分布作用经常适合到被观察的数据。不同的地点将有不同的风速发行。最频繁用于发行模型塑造风速风土学是二参量Weibull distribution,因为它能依照各种各样的发行形状,从高斯到指数。Rayleigh塑造,例子,其中被密谋在右边反对实际被测量的数据集,是形状参量合计2 Weibull作用的一个具体形式和非常严密反映每小时风速的实际发行在许多地点。由于许多电能是由高风速所产生,可用的能量多来自瞬间大的风速。一大半可用的能量,却只有占运作时间的15%。所以无法像使用燃料的火力发电厂,可以依照用电需求来调整发电量。由于风速并非常数,风力发电整年的发电量不是标示的发电率乘上所有的运转时间(一年内)。实际产生的值与理论值(最大值)称为容量因子。安装良好的风力发电机,其容量因子可达35%。跟一般使用燃料的发电厂的涡轮机相比,标示1000kW的风力发电机,每年可发的电量最多到350kW。短时间的输出功率是难以预测的,但每年发电量的变化应该在几个百分比之内。当储藏如此的关于用唧筒抽水水力电气的储藏,或其他形式的世代被用来“塑造”风力量(借着保证持续的递送可信度),商业的递送代表大约25%的费用增加,屈从的有活力的商业表现。

img121

图5-5 风能的提取

风力的分级

风之强弱程度,通常用风力等级来表示,而风力的等级,可由地面或海面物体被风吹动之情形加以估计之。目前国际通用之风力估计,系以蒲福风级为标准。蒲福氏为英国海军上将,于1805年首创风力分级标准。先仅用于海上,后亦用于陆上,并屡经修订,乃成今日通用之风级。实际风速与蒲福风级之经验关系式为:

V=0.836×(B^(3/2))

式中B为蒲福风级数,V为风速(单位:m/s)

一般而言,风力发电机组起动风速为2.5m/s,脸上感觉有风且树叶摇动情况下,就已开始运转发电了,而当风速达28~34m/s时,风机将会自动侦测停止运转,以降低对受体本身之伤害。

1.5.4 世界风能利用情况

风能的经济价值:

利用风来产生电力所需的成本已经降低许多,即使不含其他外在的成本,在许多适当地点使用风力发电的成本已低于燃油的内燃机发电了。风力发电年增长率在2002年时约25%,现在则是以38%的比例快速成长。2003年美国的风力发电成长就超过了所有发电机的平均成长率。自2004年起,风力发电更成为在所有新式能源中已是最便宜的了。在2005年风力能源的成本已降到1990年时的1/5,而且随着大瓦数发电机的使用,下降趋势还会持续。

西班牙风能利用情况:

位于西班牙东北方Aragon的La Muela,总面积为143.5km2。1980年起,新任市长看好充沛的东北风资源而极力推动风力发电。近20年来,已陆续建造450座风机(额定容量为237MW),为地方带来丰富的利益。当地政府并借此规划完善市镇福利,吸引了许多人移居至此,短短5年内,居民已由4000人增加到12000人。La Muela已由不知名的荒野小镇变成众所皆知的观光休闲好去处。

法国风能利用情况:

法国西北方的Bouin原本以临海所产之蚵及海盐著名,2004年7月1日起,8座风力发电机组正式运转,这8座风机与蚵、海盐三项,同时成为此镇之观光特色,吸引大批游客从各地涌来参观,带来丰沛的观光收入。

台湾风能利用情况:

img122

图5-6 海陆风的形成

台湾的苗栗县后龙镇好望角因位处滨海山丘制高点,早年就是眺望台湾海峡的好去处,近几年外商在邻近区域,设置了21座高100m的风力发电机,形成美不胜收的景致。该公司在2003年,看中苗栗沿海冬天强劲的东北季风,着手在后龙、竹南等地设立风力发电机,其中后龙成立了大鹏风力发电场,建置21座风机,发电总装置容量达4.2万kW,是目前全台容量最大的风场,2006年6月竣工启用后,俨然成为观光新景点,吸引不少人前往探访。好望角位在半天寮顶端居高临下,向北可看到四五座风机,往南也可望见三四座风机,加上海线铁路从山下行经,面临宽阔的台湾海峡,风景相当引人入胜,也成为欣赏风力发电机最佳景点之一。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈