第四章 遗传和变异
第一节 遗传的物质基础(一)
【教学目标】
一、知识目标
1.知道肺炎双球菌转化实验和“同位素标记法”研究噬菌体侵染细菌所采用的方法,是目前自然科学研究的主要方法。
2.理解DNA是主要的遗传物质。
二、能力目标
1.通过肺炎双球菌的转化实验,能够证明DNA是遗传物质的最关键的实验设计思路,训练学生逻辑思维的能力。
2.用“同位素标记法”来研究噬菌体浸染细菌的实验,说明DNA是遗传物质,蛋白质不是遗传物质,训练学生由特殊到一般的归纳思维的能力。
三、情感目标
遗传的物质主要是DNA,也有RNA,这就从遗传和变异的角度,强调了生命的物质性,有利于辩证唯物主义世界观的树立。
【教学建议】
关于“DNA是主要的遗传物质”的教材分析
《DNA是主要的遗传物质》主要讲述DNA是遗传物质的直接证据——“肺炎双球菌的转化实验”和“噬菌体侵染细菌的实验”。教材首先交代了科学家们对实验的设计思想,即把组成染色体的主要成分——DNA和蛋白质分开,单独地、直接地去观察DNA的作用,然后再讲述实验过程,这样有利于学生科学思维方法的培养。为了使学生更全面地理解DNA是遗传物质这一结论,教材在教学内容上增加了“肺炎双球菌的转化实验”的内容;在讲述“噬菌体侵染细菌的实验”时,利用“同位素标记”的研究方法来进行说明。这样既符合科学的研究过程,又可以很自然地使学生导出DNA是遗传物质的结论,并且能使学生受到科学方法的教育。
《DNA是主要的遗传物质》这一小节在第六章中占有重要位置,学生只有真正理解这部分内容.才能在生物性状遗传和变异的复杂现象中,从根本上懂得生物遗传和变异的实质和规律。而证明DNA是遗传物质的直接证据,则是“肺炎双球菌的转化实验”和“噬菌体侵染细菌”这两个经典实验,因此这两个实验的原理和过程是本小节的重点。
“探究科学发现过程来学习科学研究方法”是本节内容的难点。生物教学大纲中规定,通过生物学基础知识的学习,初步掌握基本的生物科学研究方法。因此在生物教学过程中对学生进行科学方法教育的渗透,成为当前生物教学改革的一个重点,而学生科学素养的形成是一个渐进的过程。在本节的教学过程中,要注重实验过程的探究与科学方法的学习相结合,充分发挥学生主体作用,使学生在探索学习中,得到科学研究方法的训练。
关于“DNA是主要的遗传物质”的证据的分析
1.证据之一:肺炎双球菌的转化实验
(1)实验目的:研究DNA和蛋白质谁是遗传物质?
(2)实验材料:两种肺炎双球菌
S型细胞 R型细胞
菌落 光滑 粗糙
菌体 有多糖类的荚膜 无多糖类的荚膜
毒性 有毒性,可致死 无毒性
(3)实验原理:
S型肺炎球菌能使人患肺炎和小鼠患败血症;R型肺炎球菌对人和动物基本无影响。
(4)实验过程及结果:
a.将无毒性的R型活细菌注射到小鼠体内,小鼠正常。
b.将有毒性的S型活细菌注射到小鼠体内,小鼠死亡。
c.将加热杀死后的S型细菌注射到小鼠体内,小鼠正常。
d.将无毒性的R型活细菌与加热杀死后的S型细菌混合后,注射到小鼠体内,小鼠死亡。
(5)关于实验结果的分析
实验分析:第1组实验注射的R型活细菌和第3组实验注射的杀死后的S型细菌均对小鼠无影响;第2组实验注射的S型细菌将导致小鼠患败血症而死亡;第4组实验注射R型活细菌和加热杀死后的S型细菌,最终导致小鼠患败血症死亡的事实说明:无毒性的R型活细菌与被加热杀死的S型细菌混合后,转化成了有毒的S型活细菌。并且格里菲斯从小鼠尸体上分离出了有毒性的S型活细菌,还进一步证实了这些转化成的S型细菌的后代也是有毒性的S型活细菌,即是可以遗传的。
(6)结论:格里菲思认为,在第4组实验中,已经被加热杀死的S型细菌中,必然含有某种促成这一转化的活性物质——“转化因子”。
(7)“转化因子”的本质是什么?
1944年,美国科学家艾弗里和他的同事,应用分子生物学技术,从S型活细菌中提取出了DNA、蛋白质和多糖等物质,然后将它们分别加入培养R型细菌的培养基中,结果发现只有加入DNA,R型细菌才能转化为S型细菌,DNA的纯度越高,转化的效果就越显著。由此可见,转化因子就是DNA。DNA才是使R型细菌产生稳定遗传变化的物质,也就是说DNA是遗传物质。
2.证据之二:噬菌体侵染细菌的实验
(1)实验目的:研究噬菌体内DNA和蛋白质谁是遗传物质?
(2)实验材料: 噬菌体 细菌
(3)实验原理:
噬菌体是专门寄生在活细菌体内的一类病毒,最终导致细菌细胞瓦解。噬菌体主要由头部(含DNA)和尾部(含蛋白质)组成。一般来说,蛋白质含S不含P,而DNA含P不含S。因而可将噬菌体内的S和P分别作同位素标记,来分析DNA和蛋白质在噬菌体生命活动过程中所起的作用。
(4)实验过程及方法:
分别用(上图)(下图)标记的噬菌体感染细菌,通过搅拌和离心得到上清液(噬菌体体外壳)和沉淀物(细菌及进入细胞内的噬菌体DNA),并检测放射性,上清液具的放射性(上图),沉淀物具的放射性(下图)。
(5)结果分析:
上述实验结果表明,噬菌体的蛋白质外壳并未进入细菌内部,而是留在细菌的外部,噬菌体的DNA却进入了细菌体内。可见噬菌体在细菌体内的增殖是在亲代噬菌体DNA的作用下完成的。
(6)结论:
子代噬菌体的各种性状,是通过亲代的DNA的遗传而来的,亲代与子代之间保持有连续性的物质是DNA而不是蛋白质,因此,DNA才是噬菌体真正的遗传物质。
遗传物质是核酸还是蛋白质?
真核生物染色体的主要成分是核酸和蛋白质,其大致比例如下:
那么,遗传物质究竟是蛋白质还是核酸呢?
经研究发现,作为遗传物质至少要具备以下4个条件:
1.在细胞生长和繁殖的过程中能够精确地复制自己;
2.能够指导蛋白质合成从而控制生物的性状和新陈代谢;
3.具有贮存巨大数量遗传信息的潜在能力;
4.结构比较稳定,但在特殊情况下又能发生突变,而且突变以后还能继续复制,并能遗传给后代。
蛋白质有可能是遗传物质吗?我们知道,组成蛋白质的主要的氨基酸约有四种。由于氨基酸的种类和数量不同,排列顺序不同,可以组成无数种蛋白质,这一点符合上述的第三个条件。蛋白质(特别是酶)能够控制生物的性状和代谢,这一点符合第二个条件。但是蛋白质不能进行自我复制,而且它在染色体中的含量往往是不固定的,分子结构也不稳定,它也不能遗传给后代,所以蛋白质不可能是遗传物质。
科学研究已经充分证明,核酸具备上述4个条件,所以核酸才是生物的遗传物质。核酸又分为脱氧核糖核酸(DNA)和核糖核酸(RNA)。绝大多数生物体的遗传物质是DNA,有些病毒的遗传物质是RNA。
20世纪中期关于遗传研究的两个经典实验
细胞亚显微结构的研究和分子生物学的分析表明,染色体主要由DNA和蛋白质组成。为了确定DNA和蛋白质对遗传的决定作用,人们首先把DNA和蛋白质从生物体内分离并提纯出来,并证明把DNA放入另一生物体内时,第一个生物体的性状在第二个生物体中出现,且这种性状还能遗传给第二个生物体的后代,蛋白质则没有这种作用。目前为止,从高等动植物体内分离提纯DNA进行这种实验的例子还很少,但有关某些细菌(1928年格里菲思和l944年艾弗里的肺炎双球菌转化实验)和病毒(1952年赫尔希的噬菌体侵染细菌)的实验足以证明DNA和蛋白质在遗传中的作用了,这些实验被称为20世纪中期的经典实验。下面对这两个实验作简单介绍:(附对实验进行总结的表格)
1.噬菌体侵染细菌的实验
噬菌体又叫细菌病毒。我们知道病毒有三种:植物病毒、动物病毒、细菌病毒。病毒寄生的对象具有专一性,细菌病毒只能寄生在细菌体内,并可导致细菌解体死亡,故称噬菌体。
1952年美国科学家赫尔希和蔡斯做了著名的噬菌体侵染细菌(大肠杆菌)实验。他们根据DNA结构中含有P但不含有S,组成蛋白质的氨基酸含有S而不含有P的事实,先用放射性标记DNA,标记蛋白质,然后再让这种作了标记的噬菌体去感染细菌。噬菌体侵染细菌的过程是:吸附→注入→合成→组装→释放。整个过程约需40分钟,最终就可释放出100~300个子代噬菌体。实验证明了只有噬菌体的DNA进入了寄主细胞,蛋白质的外壳则留在外边,从而证明了DNA在前后代中具有连续性,蛋白质不具备连续性;又因为实验结果,释放出与亲代保持相同的子代噬菌体(包括DNA和蛋白质外壳),说明了DNA能指导蛋白质合成。所以该实验是经典实验,是证明DNA是遗传物质的直接证据,由此得出结论:DNA是遗传物质。
2.肺炎双球菌转化实验
1928年,英国细菌学家格里菲思用一种双球菌对小鼠做实验。这种双球菌能够使多种哺乳动物患肺炎,因此也称肺炎双球菌。肺炎双球菌有一种有荚膜,在培养基上能形成光滑的菌落,感染这种细菌的小鼠最终会因败血症而死亡。因此这种细菌被称为有毒型(S);另有一种没有荚膜,在培养基上形成的菌落表面粗糙,小鼠的正常防御系统能够识别并杀死这种细菌,而使小鼠不患病。这种细菌因此被称为无毒型(R)。格里菲思把有毒的双球菌加热杀死后,给小鼠注射,小鼠不会死亡。可是当他把加热杀死的有毒菌(S)和活的无毒型菌(R)混合、给小鼠注射后,小鼠在24小时内全都死掉了。而且在死亡小鼠的心脏血液中找到了活的有毒型细菌(S)。这些活的有毒型细菌是从哪里来的?格里菲思提出,在死去的有毒型细菌中可能有一种转化因子,是它们使原本对小鼠无毒的细菌(R)变成了有毒的细菌(S)。
1944年,美国细菌学家艾弗里和他的同事们决心要找到这种转化因子。他们把有毒的肺炎双球菌加热杀死后,想办法分离出它的各种大分子物质。他们用蛋白酶处理这些大分子,把其中的蛋白质分解去除,然后用剩余物质与无毒的肺炎双球菌混合培养。结果无毒的双球菌变成了有毒的双球菌,并且他们分裂产生的后代也都能致病。而如果用DNA酶处理分离得到的大分子,把其中的DNA分解去除,然后用剩余物质与无毒的双球菌混合培养,结果无毒的双球菌不变成有毒的双球菌。
这些实验结果表明DNA就是要找的转化因子,它是遗传信息的携带者,表明DNA是遗传物质。
实验名称 实验过程及现象 结论
细菌的转化 1.注射活的无毒菌,小鼠正常。2.注射活的有毒菌,小鼠死亡。3.注射杀死的有毒菌,小鼠正常。4.注射“活的无毒菌+杀死的有毒菌”,小鼠死亡。
DNA是遗传物质,蛋白质不是遗传物质。
5.杀死的有毒菌与活的无毒菌混合培养,无毒菌全变为有毒菌。6.杀死的有毒菌滤液与活的无毒菌混合培养,无毒菌全变为有毒菌。7.从杀死的有毒菌滤液中提纯出:①DNA②蛋白质③糖类④无机物。分别与无毒菌混合培养,①能使无毒菌变为有毒菌;②③④与无毒菌一起混合培养,没有发现有毒菌。
噬菌体侵染细菌 用放射性元素和分别标记噬菌体的蛋白质外壳和DNA,让其在细菌体内繁殖,在与亲代噬菌体相同的子代噬菌体中只检测出放射性元素DNA是遗传物质
“证明DNA是遗传物质”的实验中的关键问题
首先,实验设计中最关键的是问题是设法把蛋白质与DNA分开,单独地、直接地去观察蛋白质和DNA的作用。
实验需要具备的技术手段是细菌的培养技术和DNA与蛋白质的提取分离技术。
【教学设计方案】
一、教学重点及解决办法
1.教学重点
(1)肺炎双球菌转化实验的原理和过程。
(2)噬菌体侵染细菌实验的原理和过程。
2.解决办法
(1)通过学生分析格里菲思的肺炎双球菌转化实验过程,使学生确信S型死细菌细胞中含有某种转化因子。再通过艾弗里的体外转化实验,即从S型活细菌中提取DNA、蛋白质和多糖等分别加入培养R型细菌的培养基中,引导学生明确只有DNA具有转化作用。
(2)通过学生分析赫尔希的噬菌体侵染细菌的实验过程,用同位素标记法,明确只有噬菌体的DNA注入到细菌体内,而蛋白质外壳留在外面,经分析得出,子代噬菌体DNA和蛋白质,都是在注入到细菌体内的噬菌体DNA指导下完成的,说明DNA是连续的。
2.教学难点及解决办法
1.教学难点
(1)肺炎双球菌转化实验的原理和过程。
(2)如何理解DNA是主要的遗传物质,RNA也是遗传物质?
2.解决办法
(1)从科学研究方法入手,对每一个实验步骤进行分析,尤其要重视第3步和第4步两个实验。何谓加热杀“死”?杀“死”后的S型细菌还含有某种转化因子?这里需要从两方面说明,一方面加热的温度一般为60℃左右,不能太高;另一方面说明转化因子的结构相当稳定。另外,在设问“肺炎双球菌的转化实验中,证明DNA是遗传物质的实验设计中最关键的思路是什么?”通过学生回答、教师引导,最后指出关键是“DNA和蛋白质分开,单独、直接地去观察DNA和蛋白质的作用。”
(2)通过讲解烟草花叶病的实例来说明,并列表对比。
【课时安排】
1课时。
【教学过程】
引言:上个学期我们已经学习过了生物的新陈代谢、生殖和发育,这些都是生物的基本特征。在新陈代谢和生殖发育的基础上,生物还表现出遗传和变异的特性,这也是生命的基本特征之一。从今天开始,我们将要学习这方面的知识。
那么,遗传和变异究竟是怎样发生的?在生物体内是什么物质对遗传和变异起着决定作用?生物的遗传和变异有哪些共同的基本规律?对于这些问题,我们将在这一章进行学习。
我们知道,子代和亲代在性状上相似,是由于亲代将决定生物性状的遗传物质传给了后代,那么什么是遗传物质呢?
一、DNA是主要的遗传物质
通过对细胞的有丝分裂、减数分裂和受精过程的学习,认识到染色体在生物的传种接代中具有重要作用。染色体的主要成分是蛋白质和DNA。那么,这两种物质中,究竟哪一种是遗传物质呢?请看下面两个著名的实验。
1.DNA是遗传物质的证据
(1)肺炎双球菌的转化实验
出示R型细菌和S型细菌的菌体和菌落图,让学生对图指出何者是R型菌体?何者是S型菌体?菌落各是怎样?毒性呢?以加深学生对两种细菌的了解。
提问:
a.肺炎双球菌的转化实验分哪几个步骤?各看到哪些现象?
b.第四组的实验结果说明了什么?
c.艾弗里及其同事的设计思路是什么?他们的研究结果说明了什么?
学生阅读教材P2~P3,边看书边看图解,回答上述问题。
教师根据学生回答进行点拨,并强调:
实验过程可分为四大步骤:注射无毒性的R型活细菌,小鼠正常;注射有毒性的S型活细菌,小鼠患败血症死亡;注射加热杀死了的S型细菌,小鼠正常;注射“R型活细菌+杀死的S型细菌”,小鼠患败血症死亡。
第四组的实验结果表明,被加热杀死的S型细菌中,存在着使R型活细菌转变成S型细菌的“转化因子”。这一“转化因子”究竟是什么物质,当时的格里菲思并不知道。
DNA、蛋白质和多糖等,何者是“转化因子”,即遗传物质?艾弗里和他的同事设法以S型活细菌中提取DNA、蛋白质、糖类及无机物,分别与R型细菌混合培养,其结果是,只有加入DNA的,R型才转化为S型细菌。这一结果表明:DNA是遗传物质,蛋白质不是遗传物质。
(2)噬菌体浸染细菌的实验
出示噬菌体模式图,学习完各部分结构名称后,教师归纳:
噬菌体是一种专门寄生在细菌体内的病毒,它的头部和尾部都具蛋白质的外壳,头内部含有DNA。
出示噬菌体浸染细菌的实验过程图。
学生阅书P3~P4页,然后回答问题:
a.放射性同位素和放射性同位素用于标记噬菌体的何种成分?有什么目的?
b.叙述噬菌体侵染细菌的实验过程。
c.噬菌体在细菌体内的增殖是在何物质的作用下完成的?根据是什么?
d.这个实验的结果说明了什么?
教师归纳:
a.从元素组成来看,由于蛋白质分子中含S而不含P,DNA分子中含P而不含S。这样,就可让一部分噬菌体只标记蛋白质而不标记DNA,另一部分噬菌体只标记DNA而不标记蛋白质,从而分别观察这两种大分子物质的变化和作用。
b.噬菌体侵染细菌的过程:
吸附→注入(DNA)→复制子代噬菌体的DNA和合成子代噬菌体的蛋白质→组装子代噬菌体。
c.噬菌体在细菌体内的增殖是在噬菌体DNA的指导下完成的,因为对被标记物质进行测试,结果表明噬菌体的蛋白质并没有进入细菌内部,只有噬菌体的DNA才进入细菌体内。
d.实验结果表明:DNA是遗传物质,蛋白质不是遗传物质。
2.DNA是主要的遗传物质
(1)某些病毒的遗传物质是RNA
如烟草花叶病毒,不含有DNA,只含有蛋白质和RNA。对这些病素来说,RNA就起着遗传物质的作用。
(2)绝大多数生物的遗传物质是DNA。
二、总结
通过肺炎双球菌的转化实验和噬菌体浸染细菌的实验,充分说明了DNA是遗传物质,蛋白质不是遗传物质。
虽然少数病毒的遗传物质是RNA,但绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。
【扩展资料】
一、关于细胞质遗传
细胞质遗传生物的大多数性状是受染色体上的DNA控制的,染色体上的DNA存在于细胞核内,受核内DNA控制的遗传叫做细胞核遗传。但是,生物也有一些性状不是由细胞核内的DNA所控制,而是由细胞质里的DNA所控制,这样的遗传叫做细胞质遗传。
细胞质遗传的主要特点:细胞质遗传的主要特点一是细胞质遗传都表现为母系遗传;二一是杂交后代都不出现一定的分离比例。其原因是:细胞进行分裂时,细胞质中的遗传物质不像细胞核中染色体和DNA分子那样进行有规律的分离,而是随机地分配到子细胞中去。
二、关于细菌转化实验的补充内容
多年来,世界各国进行了许多细菌的转化实验,进一步确定遗传物质是DNA。所谓转化是指从甲种细菌提取出转化因素(即遗传物质)来处理乙种细菌,使乙种细菌获得甲种细菌的某些遗传特性。例如,人和动物的一种肺炎是由肺炎双球菌引起的。肺炎双球菌有许多种,像农作物的品种一样,各有其遗传的特异性。有人从一种有荚膜的肺炎双球菌中提取出DNA和蛋白质,再用这种DNA培养无荚膜的肺炎双球菌。结果,这种细菌转化成为有英膜的了,而且这一有荚膜的新特性还可以一代一代地遗传下去。如果用提取出的蛋白质培养细菌,就不能产生转化的效果。实验的结果可以确定,遗传物质是DNA,而不是蛋白质。
三、细胞质和细胞核的互作
细胞质的线粒体是一个半自主的细胞器,它有自己的基因组,能进行DNA的复制、转录和翻译,可以编码自身的以及少量蛋白质。但这些过程并不是线粒体完全独立地进行的,它离不开核基因的指导与调控。线粒体基因表达所必需的一些蛋白质,如RNA聚合酶、核糖体大亚单位以及许多调控因子都是由核基因编码,在细胞质的核糖体上合成后,运输进入线粒体后再起作用。线粒体功能的正常发挥需要线粒体基因组和核基因组的互作。组成呼吸链的一系列结构蛋白是线粒体和细胞核共同编码的,这些蛋白质的正确组装,受核基因控制。同时,研究发现,细胞质的线粒体也可以以不同的方式影响该基因的表达。
第二节 遗传的物质基础(二)
【教学目标】
一、知识目标
1.理解DNA分子的结构特点。
2.理解DNA分子复制的过程和意义。
二、能力目标
1.培养学生自学能力:在自学中去领悟知识,去发现问题和解决问题。
2.培养观察能力、分析理解能力:通过观察DNA结构模型及制作DNA双螺旋结构模型来提高观察能力、分析和理解能力。
3.培养创造性思维的能力:通过探索求知、制作模型、讨论交流激发独立思考、主动获取新知识的能力。
三、情感目标
通过DNA的结构和复制的学习,探索生物界丰富多彩的奥秘,从而激发学生学科学、用科学、爱科学的求知欲。
【教学建议】
一、重难点分析
1.DNA分子结构的重难点分析
(1)碱基互补配对原则是本段内容的教学重点,它是DNA结构、DNA复制以及DNA控制蛋白质合成过程中遵循的重要原则,是分析有关DNA题目的重要依据。
(2)DNA分子的双螺旋结构是本段内容的教学重点和难点:
a.DNA分子的双螺旋结构是学生理解遗传学理论的知识基础;
b.DNA独特的双螺旋结构保证了DNA具有多样性、特异性、稳定性的特征,它是学生理解生物的多样性、特异性、物种稳定性本质的结构基础。
(3)利用教学课件进行碱基配对的模拟实验和由磷酸、脱氧核糖、含氮碱基构建DNA分子平面结构模式图是另一教学难点,原因有二:a.学生计算机操作能力不同;b.实验中涉及一些学生未接触的化学知识,从而使学生对实验的理解和分析上有一定的难度。
2.DNA分子复制的重难点分析
(1)DNA分子的复制过程是本段内容的教学重点:
DNA分子复制是DNA的主要功能之一,它是细胞分裂知识的延续,是理解遗传意义的分子基础。在细胞增殖周期的一定阶段,DNA发生精确复制,随之以染色体为单位将复制的DNA平均分配到两个子细胞中去,保证遗传的稳定;同时它又是后面学习基因突变和现代生物进化理论的知识基础,DNA复制过程中的差错导致遗传信息改变,使生物发生变异。从进化角度看,DNA的不断变化发展,推动生物的进化。
(2)DNA分子的半保留复制方式是本段内容的教学难点:
DNA分子的半保留复制保证了DNA的精确拷贝,保证了遗传物质的稳定性。复制的精确性依赖于DNA的双螺旋结构和碱基互补配对原则,DNA的双螺旋结构为复制提供精确的模板,碱基互补配对原则保证了亲代DNA分子的每条链都含有合成它互补链所必需的全部信息,所以DNA的两条母链均可作为模板合成子链,且母链与互补子链形成子代DNA,完成半保留复制。由于DNA的半保留复制,亲代DNA虽经多代复制,它的两条母链仍存于后代而不会消失,这是解答DNA复制有关计算的关键。
二、关于“DNA分子的结构”的分析
1.化学组成:
DNA分子是由很多个脱氧核苷酸聚合而成的长链,脱氧核苷酸共分4种,见下图:
图14
2.结构特点
DNA的空间结构即双螺旋结构有三个特点:
a.从总体上看,是由两条平行的脱氧核苷酸长链盘旋而成的,成为规则的双螺旋结构。
b.脱氧核糖和磷酸交替连接构成基本骨架排列在外侧,碱基在内侧。
c.内部:连接两条链的碱基通过氢键形成碱基对,配对遵循碱基互补配对规律:A一定与T配对,C一定与G配对。
关于“DNA分子的特性”的分析
DNA分子具有三个特性:多样性、特异性及稳定性。
a.多样性
DNA分子结构的多样性是指组成的DNA的碱基对的排列方式是多种多样的,可总结为种碱基对的排列方式,例如,一个具有1000个碱基对的DNA所携带的遗传信息是种。而且不同的DNA分子其碱基对的数量也不尽相同,这样就构成了DNA分子的多样性。
b.特异性
不同的DNA分子由于碱基对的排列顺序存在着差异,因此,每一个DNA分子的碱基对都有其特定的排列顺序,这种特定的排列顺序包含着特定的遗传信息,从而使DNA分子具有特异性。
假设一个DNA分子中的一条多核苷酸链有100个4种不同的碱基,它们的可能排列方式就是一个非常巨大的数字。那么这个“非常巨大的数字”是多少?
如下面的示意图,表示DNA分子的一条链由l00个脱氧核苷酸通过一定的化学键相互连接而成。
图中每一方框表示一个脱氧核苷酸。已知组成DNA的脱氧核苷酸有4种,分别含有A、G、T、C四种碱基。链中每一方框处都有可能是四种脱氧核苷酸中的任意一种,取其所含碱基代替,即有可能为A或G或T或C等四种排列方式。根据乘法原理,由于方框均可重复选择4种碱基中的任何一种,因而100个方框中碱基的排列方式有:
图15
即由100个核苷酸组成的单链DNA分子中,碱基的排列顺序就有4100种。
令41000,两边同时取对数,
则:lgA=lg4100=lg2200=200×0.3010=60.2查反对数表可知:A=1.585×1060,该数为61位数。
在这个DNA分子的一条链中,脱氧核苷酸的排列顺序可以有1.585×1060种。也就是说这个DNA分子蕴藏了1.585×1060种遗传信息。
c.稳定性
DNA分子结构的稳定性体现在:一是分子骨架中脱氧核糖和磷酸的交替排列方式固定不变;二是每个DNA分子具有稳定的双螺旋结构,将易分解的含氮碱基排列在内侧;三是两条链间碱基互补配对原则严格不变。
DNA分子的双螺旋结构能保持相对稳定,原因有以下三点:其一,是DNA分子双螺旋结构的内侧,通过氢键形成的碱基对,使两条脱氧核苷酸长链稳固地并联起来。其二,是碱基对之间纵向的相互作用力也进一步加固了DNA分子的稳定性。各个碱基对之间的这种纵向的相互作用力叫做碱基堆积力,它是芳香族碱基π电子间的相互作用引起的。现在普遍认为碱基堆积力是稳定DNA结构的最重要的因素。其三,双螺旋外侧负电荷的磷酸基团同带正电荷的阳离子之间形成的离子键,可以减少双链间的静电斥力,因而对DNA双螺旋结构也有一定的稳定作用。
三、关于“RNA的种类及分子结构”的分析
RNA分子是由A、G、C、U4种核苷酸连接而成的多核苷酸单链。在细胞里,RNA由于部位和功能的不同,分为3种类型,它们的结构也有所不同。
1.信使RNA(mRNA):是单链结构,它是以DNA双链中的一条链为模板,在细胞核内合成,然后进入细胞质。由于它传达了DNA上的遗传信息,所以叫做信使RNA。
2.转运(或转移)RNA(tRNA):这是分子量较小的RNA,它基本上也是单链,但是常常部分地扭曲成双链螺旋状,它的平面形状如三叶草(一种豆科植物)的叶。
(如上图),tRNA也是以DNA分子中的某些部分作为模板,按照碱基互补原则合成的。在蛋白质合成的过程,tRNA起着搬运各种氨基酸的作用。
3.核糖体RNA(rRNA):也是单链结构,它也是以DNA分子中某些部分作为模板会成的。rRNA与蛋白质结合在一起,形成核糖体,是核糖体结构的一部分。
图16
【教学设计方案】
1.教学重点
(1)DNA分子的结构。
(2)碱基互补配对原则及其重要性。
(3)DNA分子的多样性。
(4)DNA复制的过程及特点。
2.教学难点
(1)DNA分子的立体结构特点。
(2)DNA分子的复制过程。
3.教学疑点
DNA分子中只能是A~T、C-G配对吗?能不能A~C、G~T配对?为什么?
4.解决办法
(1)充分发挥多媒体计算机的独特功能,把DNA的化学组成、立体结构和DNA的复制过程等重、难点知识编制成多媒体课件。将这些较难理解的重、难点知识变静为动、变抽象为形象,转化为易于吸收的知识。
(2)通过制作DNA双螺旋结构模型,加深对DNA分子结构特点的理解和认识。
(3)通过讨论交流、通过提高学生的识图能力、思维能力,通过配合适当的练习,将知识化难为易。
(4)通过单环化合物、双环化合物所占空间及碱基对之间氢键数的稳定性,来说明只能是A~T、C~G配对。
【课时安排】
2课时。
【教学过程】
第一课时
引言:我们经过学习,已经知道DNA是主要的遗传物质,它能使亲代的性状在子代表现出来。那么,DNA为什么能起遗传作用呢?我们来学习DNA的结构。
一、DNA的结构
1953年,沃森和克里克提出了著名的DNA双螺旋模型,为合理地解释遗传物质的各种功能奠定了基础。为了理解DNA的结构,先来学习DNA的化学组成。
1.DNA的化学组成
学生阅读教材第7~8页,看懂图6~4及银幕上出现的结构平面图,基本单位图。学生回答下列问题:
(1)组成DNA的基本单位是什么?每个基本单位由哪三部分组成?
(2)组成DNA的碱基有哪几种?脱氧核苷酸呢?DNA的每一条链是如何组成的?
学生回答后,教师点拨:
(1)组成DNA的基本单位是脱氧核苷酸,它由一个脱氧苷糖、一个磷酸和一个含氮碱基组成。
(2)组成DNA的碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T);有四种脱氧核苷酸:腺嘌呤脱氧核苷酸,鸟嘌呤脱氧核苷酸,胞嘧啶脱氧核苷酸,胸腺嘧啶脱氧核苷酸。DNA的每一条链由四种不同的脱氧核苷酸聚合而成多脱氧核苷酸链。
2.DNA分子的立体结构
出示DNA模型,学生阅书第8页,指着模型进解说过归纳,结构的主要特点是:
(1)两条长链按反向平行方式盘旋成双螺旋结构(简要解释“反向”,一条链是55~35,另一条链是35~55,不宜过深)。
(2)脱氧核糖和磷酸交替连接,排列在DNA分子的外侧,构成基本骨架,碱基排列在内侧。
(3)碱基互补配对原则:
两条链上的碱基通过氢键(教师对“氢键”要进行必要的解释)连接成碱基对,且碱基配对有一定的规律:A -T、G-C(A一定与T配对,G一定与C配对)。
可见,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链上的碱基排列顺序也就确定了(可在黑板上练习一道题以巩固互补配对原则)。
教师设问,学生思考后,由教师回答:
设问一:碱基配对时,为什么嘌呤碱不与嘌呤碱或嘧啶碱不与嘧啶碱配对呢?
这是由于嘌呤碱是双环化合物(画出双环),占有空间大;嘧啶碱是单环化合物(画出单环),占有空间小。而DNA分子的两条链的距离是固定的,只有双环化合物和单环化合物配对才合适。
设问二:为什么只能是A-T、G-C,不能是A-C,G-T呢?
这是由于A与T通过两个氢键相连,G与C通过三个氢键相连,这样使DNA的结构更加稳定,所以,A与T或G与C的摩尔数比例均为1:1。
学生训练:某生物细胞DNA分子的碱基中,腺嘌呤的分子数占18%,那么鸟嘌呤的分子数占()
A.9%B.18%C.32%D.36%
答案:C
(为巩固DNA立体结构的有关知识,加深对DNA分子结构特点的理解,此时应让学生做《实验十二、制作DNA双螺旋结构模型》,实验的材料及一些基本步骤可在上课前准备好,教师示范,控制好上课的时间)。
二、DNA的特性
师生共同活动,学生讨论和教师点拨相结合。
(1)稳定性:DNA分子两条长链上的脱氧核糖与Pi交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DAN分子的稳定性。
(2)多样性:DNA分子中碱基相互配对的方式虽然不变,而长链中的碱基对的排列顺序是千变万化的。如一个最短的DNA分子大约有4000个碱基对,这些碱基对可能的排列方式就有种。实际上构成DNA分子的脱氧核苷酸数目是成千上万的,其排列种类几乎是无限的,这就构成DNA分子的多样性。
(3)特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。
本节课我们学习了DNA的化学组成,DNA的立体结构和DNA的特性。组成DNA的碱基共有A、T、G、C四种,构成DNA的基本单位也有4种。每个DNA分子由二条多脱氧核苷酸长链反向平行盘旋成双螺旋结构,两条链上的碱基按照碱基互补配对原则,即A-T、GC,通过氢键连接成碱基对。DNA分子具有稳定性、多样性和特异性。多样性产生的原因主要是碱基对的排列顺序千变万化,4种脱氧核苷酸排列的特定顺序,包括特定的遗传信息。每个DNA分子能够贮存大量的遗传信息。
第二课时
引言:通过上节课有关DNA结构的学习,理解DNA分子不仅能够储存大量的遗传信息,还能传递遗传信息,遗传信息的传递就是通过DNA分子的复制来完成的,怎样复制呢?
一、DNA的复制
1.复制的概念
在细胞有丝分裂和减数第一次分裂的间期,以母细胞DNA分子为模板,合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。
2.“准确”复制的原理
(1)DNA具有独特的双螺旋结构,能为复制提供模板;
(2)碱基具有互补配对的能力,能够使复制准确无误。
3.DNA复制的过程
学生阅书第10页,看图6~6,银幕上也出现动态的DNA分子复制过程图解,待学生看懂图后,回答如下问题:
(1)什么叫解旋?解旋的目的是什么?
(2)什么叫“子链”?复制一次能形成几条子链?
(3)简述“子链”形成的过程。
让学生充分回答上述问题后,教师强调:
复制的过程大致可归纳为如下三点:
(1)解旋提供准确模板:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,两条螺旋的双链解开,这个过程叫做解旋。解开的两条单链叫母链(模板链)。
(2)合成互补子链:以上述解开的每一段母链为模板,以周围环境中游离的4种脱氧核苷酸为原料,按照碱基互补配对原则,在有关酶的作用下,各自合成与母链互补的一段子链。
(3)子、母链结合盘绕形成新DNA分子:在DNA聚合酶的作用下,随着解旋过程的进行,新合成的子链不断地延伸,同时每条子链与其对应的母链盘绕成双螺旋结构,从而各自形成一个新的DNA分子,这样,1DNA分子→2个完全相同的DNA分子。
4.DNA复制的特点
讲述:
(1)DNA分子是边解旋边复制的,是一种半保留式复制,即在子代双链中,有一条是亲代原有的链,另一条(子链)则是新合成的。
(2)DNA复制严格遵守碱基互补配对原则准确复制。从而保证了子代和亲代具有相同的遗传性状。
问:DNA复制后两个子代DNA分子和亲代DNA分子是否完全相同?为什么?
通过设问,学生回答,进一步让学生理解和巩固DNA复制的全过程。
5.DNA复制的必需条件
讲述:
DNA复制时必需条件是亲代DNA的两条母链提供准确模板、四种脱氧核苷酸为原料、能量(ATP)和一系列的酶,缺少其中任何一种,DNA复制都无法进行。
6.DNA复制的生物学意义
DNA通过复制,使遗传信息从亲代传给了子代,从而保证了物种的相对稳定性,保持了遗传信息的连续性,使种族得以延续。
二、小结
1.通过学习DNA的结构和复制,必须掌握DNA的化学组成、立体结构、碱基互补配对原则以及DNA的复制过程、复制的必需条件及DNA复制在生物学上的重要意义。为学习生物的遗传和生物的变异奠定基础。
2.目前DNA分子广泛用于刑事案件侦破等方面
(l)DNA分子是亲子鉴定的主要证据之一。
(2)把案犯在现场留下的毛发、血等进行分析作为破案的证据,与DNA有关。
三、课堂练习
1.某生物的双链DNA分子共有含氮碱基77对,其中一条链上(A+T):(C+G)=2.5,问该DNA分子连续复制两次共需游离的胸腺嘧啶脱氧核苷酸的数目是( )
A.1200个 B.400个 C.600个 D.1500个
2.课本第10页复习题一、二。
【扩展资料】
一、DNA分子的长度
天然DNA分子的长度往往是很长的,DNA长度可用电子显微镜直接测量,下表列出了一些DNA的长度。
生物体 千碱基对(kb) 长度(微米)
病毒 SV~40λ噬菌体噬菌体牛痘病毒 5.148.6166190 1.7175665
细菌 支原体大肠杆菌 7004 0000 2601 350
真核生物 酵母果蝇人 13 500166 0002 900 000 4 60056 000990 000
二、被遗忘的英格兰玫瑰
很多人都知道沃森和克里克发现DNA双螺旋结构的故事,更进一步,有人还可能知道他们与莫里斯·威尔金斯因此分享了1962年的诺贝尔生理学或医学奖。然而,有多少人记得罗莎琳德·富兰克林(Rosalind Franklin),以及她在这一历史性的发现中做出的贡献?
富兰克林1920年生于伦敦,15岁就立志要当科学家,但父亲并不支持她这样做。她早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。她深受法国同事的喜爱,有人评价她“从来没有见到法语讲的这么好的外国人”。1951年,她回到英国,在伦敦大学国王学院取得了一个职位。
在那时候,人们已经知道了脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它如何在生命活动中发挥作用的机制还不甚了解。
就在这时,富兰克林加入了研究DNA结构的行列——在相当不友善的环境下。她负责起实验室的DNA项目时,有好几个月没有人干活。同事威尔金斯不喜欢她进入自己的研究领域,但他在研究上却又离不开她。他把她看作搞技术的副手,她却认为自己与他地位同等,两人的私交恶劣到几乎不讲话。在那时的科学界,对女科学家的歧视处处存在,女性甚至不被准许在大学的高级休息室里用午餐。她们无形中被排除在科学家间的联系网络之外,而这种联系对了解新的研究动态、交换新理念、触发灵感极为重要。
富兰克林在法国学习的X射线衍射技术在研究中派上了用场。X射线是波长非常短的电磁波。医生通常用它来透视,而物理学家用它来分析晶体的结构。当X射线穿过晶体之后,会形成衍射图样——一种特定的明暗交替的图形。不同的晶体产生不同的衍射图样,仔细分析这种图形人们就能知道组成晶体的原子是如何排列的。富兰克林精于此道,她成功的拍摄了DNA晶体的X射线衍射照片。
富兰克林拍摄的DNA晶体的X射线衍射照片,这张照片正是发现DNA结构的关键。
图17
此时,沃森和克里克也在剑桥大学进行DNA结构的研究,威尔金斯在富兰克林不知情的情况下给他们看了那张照片。根据照片,他们很快就领悟到了DNA的结构——现在已经成为了一个众所周知的事实——两条以磷酸为骨架的链相互缠绕形成了双螺旋结构,氢键把它们连结在一起。他们在1953年5月25日出版的英国《自然》杂志上报告了这一发现。这是生物学的一座里程碑,标志着分子生物学时代的开端。
当沃森等人的论文发表的时候,富兰克林已经离开了国王学院,威尔金斯似乎很庆幸这个不讨他喜欢的伙伴的离去。然而富兰克林的贡献是毋庸置疑的:她分辨出了DNA的两种构型,并成功的拍摄了它的X射线衍射照片。沃森和克里克未经她的许可使用了这张照片,但她不以为忤,反而为他们的发现感到高兴,还在《自然》杂志上发表了一篇证实DNA双螺旋结构的文章。
这个故事的结局有些伤感。当1962年沃森、克里克和威尔金斯获得诺贝尔生理学或医学奖的时候,富兰克林已经在4年前因为卵巢癌而去世。按照惯例,诺贝尔奖不授予已经去世的人。此外,同一奖项至多只能由3个人分享,假如富兰克林活着,她会得奖吗?性别差异是否会成为公平竞争的障碍?后人为了这个永远不能有答案的问题进行过许多猜测与争论。
与没有获得诺贝尔奖相比,富兰克林的早逝更加令人惋惜。她是一位才华横溢的女科学家,然而知道她和她的贡献的人寥寥无几。沃森在《双螺旋》(1968年出版)一书中甚至公开诋毁富兰克林的形象与功绩,歪曲她与威尔金斯之间的恩怨。许多关于双螺旋的书籍和文章根本不提及富兰克林,尽管克里克在很多年后承认“她离真相已经只有两步”。富兰克林始终相信人们对才能和专业水准的尊重会与性别无关,但她正是这倾斜的世界中女科学家命运的代表。如果她是男性则可能如何,这种假设固然没有意义,但性别的确一直是她在科研领域发挥才能的绊脚石,并使她的成就长时间得不到应有的认可。
三、DNA复制的原料
DNA复制时,每一条链上所暴露出来的碱基各自与一个游离于核中的互补核苷酸碱基相连,连上去的各种核苷酸都是脱氧核苷三磷酸(dATP、dGTP、dCTP、dTTP),在DNA聚合酶的催化作用下,这些新连接上去的核苷三磷酸丢弃两个磷酸,放出能量,变为核苷一磷酸(dAMP、dGMP、dCMP、dTMP),按顺序连接成一个新链,它们放出的能量用于这一多聚反应。
四、DNA复制的时间
DNA复制过程很快,大肠杆菌含有一个DNA分子,约有500万个碱基,条件适宜,半小时内即可完成一个复制过程,细胞也分裂为二:人的细胞内有46个DNA分子,碱基对多达40亿个,复制一次也不超过几小时,且精确度极高。
真核细胞DNA与原核细胞DNA的几点比较
(1)真核细胞中DNA的碱基顺序,很多都是没有表达功能,即没有基因的特性,不能表达为蛋白质的,有基因功能的不超过10%;原核细胞则相反,DNA几乎都有表达功能。
(2)真核细胞DNA有许多重复的碱基顺序,这在原核细胞是没有的。例如,在小鼠的DNA中,有10%是高度重复顺序,共含约100万个重复顺序,每一顺序含300个碱基对。染色体两端和着丝粒部分都是重复顺序,它们没有转录的功能。
(3)真核细胞染色体DNA都是线形的,线粒体和叶绿体DNA是环形的;细菌核区的DNA、质粒DNA、某些病毒DNA是环形的。
第三节 生物的变异
【教学目标】
1.在了解遗传现象的基础上,了解生物变异的现象及其普遍性。
2.通过对具体变异现象的分析,了解变异的类型以及不同类型的变异产生的原因,使学生对遗传物质在生物的遗传、变异中的作用有较全面的了解和认识。同时,通过遗传与变异的相互关系进行辩证观点的教育。
3.了解变异在人类生产活动中的实践意义。
重点、难点分析
1.遗传的变异的原因是本节教学的重点
在“生物的遗传”一节中,教材花了相当的篇幅帮助学生认识生物为什么会遗传,决定遗传的物质到底是什么。所以,学生初步了解了核酸(DNA)、基因以及染色体在性状遗传中所起的作用。遗传物质不仅与遗传有关,同样是生物变异的物质基础,这一点应在本节教学中帮助学生认识到。遗传物质的稳定性、连续性决定了生物的遗传,而遗传物质的可变性又使生物可以发生变异,而且遗传物质的变化引起的生物性状的改变是可以传递给后代的。教学中还应注意结合实际例证向学生介绍环境因素对遗传物质变化的影响,为以后《生物的进化》和《生物与环境》两章的学习打下基础。
2.变异在农业中的应用是本小节教学的一个难点
学生很难接触选种、育种工作,所以,对这方面的知识不易理解。教材介绍了有关选育种的三种途径,人工选种、杂交育种以及辐射育种(人工诱变育种)。建议授课教师多举例,特别是可能涉及到学生身边生活的例证,从感性知识开始,去理解有关的育种选种知识和意义,并且了解不同育种、选种方法的特点。
此外,随着生物技术的发展,利用基因工程培养新品种已经应用于农业育种工作,学生可能从各种媒体的介绍中接受过这方面的信息,但不一定能够理解。若有时间,教师也可对这一方面的知识做些介绍,引起学生对科学新技术的兴趣。
3.关于遗传的变异和不遗传的变异的两个实例。遗传的变异的选用的例子是色盲遗传。色盲遗传为伴性遗传,教材中未涉及这一方面的内容,学生也不易理解。所以,我以为以人的上眼睑单双眼皮为例进行分析比较合适。
【教学过程设计】
引言:在上一节的学习中,我们曾经讨论过人的上眼睑的遗传问题。这节课我们首先从人的上眼睑的遗传问题开始我们新的问题的研究。
有一对夫妇,他们有两个孩子。爸爸、妈妈的上眼睑是双眼皮。两个孩子,一个孩子为双眼皮,另一个孩子为单眼皮。即双眼皮的孩子继承了父母双亲的性状,这种现象叫做遗传。另一个孩子的上眼睑与双亲不同,是不是也叫做遗传?若是遗传,为什么与父母的性状不相同?若不是,叫做什么?
与遗传现象伴随存在的另一种生命现象就是变异。
一、变异的现象与概念
在自然界中,与遗传现象一样,变异现象是普遍存在的。
提问,讨论:在我们周围,可以看到哪些现象是变异现象?根据同学们的讨论,什么叫做变异?请做一个小结。
变异:生物的亲代与子代之间、子代与子代个体之间在性状上的差异称为变异。或生物在生殖过程中,在上下代之间、子代之间表现出的性状差异。
提问:比较遗传和变异两个概念,两个概念有什么共同点,有什么差异?
生物的遗传和变异都是通过生物的生殖过程实现的。在生物的生殖过程中,上下代之间的相似性为遗传。但是生物的后代不会也不可能完全与祖先一样。后代在继承亲代特征的主要特点时还会产生一定的差异,这些差异称为变异。所以,我们所说的变异是在遗传的基础上的变异,变异是在一定范围内的变化。小猫与大猫的样子有所不同,但是小猫仍旧是猫,并没有变为其他生物。
提出问题:为什么说变异是在遗传的基础上的变异?这种说法是否有根据?
二、变异的原因
1.外界环境的影响
在我们观察到的变异中,有些是由于外界环境的影响产生的。在我们刚才提出的变异现象中,哪些是属于这一类?
提问,讨论:同一品种的小麦种在不同的田里,小麦的麦穗有大穗、小穗,产生大穗、小穗的原因可能是什么?你如何证明这些差异是由于环境影响造成的?将大穗和小穗上的种子收获后分别种到田里,它们的后代会如何?
小结:田中小麦的大穗和小穗的变异是由环境变化引起的,这种变异一般是不能遗传的。
提问:什么因素引起的变异可以传递给后代?我们再来看看另一种情况。
2.遗传物质的变化
提问,讨论:一个孩子单眼皮。但是,他的父母是双眼皮,这种变异是怎样产生的?这种变异是否可以传递给后代呢?
我们从上一节的学习中已经知道,若这个孩子是单眼皮,他的双眼皮的父母的基因组成一定是Aa、Aa。孩子与父母的性状不同,是因为在生殖过程中父母传给了他决定单眼皮的基因。也就是说,他的遗传物质组成与父母有了差异,因此产生了与父母不同的性状。他的这种性状可以是通过生殖过程传递给他的后代。
小结:这种变异是由遗传物质变化引起的,这种变异是可以遗传的。
根据以上变异的原因,我们将变异分为两类:
遗传的变异:变异由遗传物质决定;
不遗传的变异:变异由外界环境影响引起。
请同学们再分析两个例子。(1)某对色觉正常的夫妇生了一个色盲的儿子。(2)某兄弟二人,哥哥长期在室外工作,弟弟长期在室内工作。哥哥与弟弟相比脸色较黑。哪一种变异可以遗传?为什么?
提出问题:是否由环境影响引起的变异都是不能遗传的变异?
一些环境因素也可能使遗传物质发生改变。若环境影响引起了遗传物质的改变,这样产生的变异是可以传递给后代的。根据这一原理,人类可以利用一些特殊环境因素使遗传物质改变而制造出能遗传的变异为人类所用。
所以,遗传物质是遗传和变异这一生命活动的物质基础。
提出问题:变异对生物个体、对生物界会产生什么影响?
三、变异对生物个体的影响
变异对生物个体有利、还是不利?这要看变异是否有利于生物的生存。我们看两个例子。
小麦要获得高产,人们采取的办法往往是多施肥、多浇水。肥多水多,小麦的茎秆会长高,茎秆高,小麦成熟时容易倒伏,又会造成粮食减产。在这种小麦中,出现矮秆小麦,可以抗倒伏,但不会影响小麦在肥多水多的情况下长大穗。
一些玉米植株发生变异会出现没有叶绿素的白化苗。绿色植物生长要进行光合作用,这种白化苗就无法生存下去。
提问:高秆小麦变异为矮秆小麦,绿色玉米苗变异为白化苗,这都是变异,他们对生物个体的生存有什么影响?
——前者有利于生存,后者不利于生存。
根据变异是否有利于生物的生存,我们可以把变异分为两类:有利变异和不利变异。
四、变异在生物进化上的意义
变异对进化有重要意义。
地球上环境复杂多样,不断变化。多种多样的生物可以适应不同的环境。
此外,生物由简单到复杂、低等到高等的进化,生物的变异为进化提供了原始材料。
变异对进化的重要意义,我们在下一章将继续学习。
五、变异在农业生产上的应用
人类出于生存的需要,在远古时就开始注意遗传和变异现象,并对遗传变异的现象加以利用,特别是在农牧业生产中。如春秋时代的《楚辞》中记载“马母驴父,生子曰赢”,意思就是马和驴的后代——骡子表现出极大的优势。
人类在农业上利用变异的方法主要有这样几种:
(1)在农作物、家禽、家畜中,有许多对人类有益的变异,人类可以根据自己的需要进行选择、培育,获得新的品种,如肉用牛和奶用牛的培育。
(2)用杂交的方法,将不同生物个体的性状重新组合,形成新的性状组合的新品种。如高产不抗倒伏的小麦与产量不高但抗倒伏的小麦杂交,让两种小麦的遗传物质重新组合产生变异,可以培养出高产同时抗倒伏的新的小麦品种。
(3)为培养新的品种,也可以改变环境因素来影响遗传物质,使生物产生变异并对变异进行选择,培育出新品种。如用射线照射或用药物处理植物的种子,种子产生变异后进行选择,选出有利于生产的变异培育成新品种。
应用以上方法,人类曾经培育出许多品种。
随着科学技术的发展,科学家使用基因工程的方法来改变生物的基因从而改变生物的性状创造新的生物。如将决定人的生长激素的基因、决定人的胰岛素的基因用基因工程的方法植入大肠杆菌的细胞内,让大肠杆菌发生变异,合成人所需要的生长激素或者胰岛素,造福于人类。
小结:这节课我们主要讨论了什么是变异,生物产生变异的原因以及如何利用生物产生的变异选育适合人类需要的新品种。科学的发展可以造福于人类,但若不按照自然规律办事,也会带来灾难。所以,我们在创造新的生物品种和物种时必须慎重。
【扩展资料】
选育新品种的方法
选育新品种有多种方法,下面介绍几种主要方法。
1.选择育种法:以自然变异为基础,根据个体的表现型选择符合人类需要的基因型,经过长期积累达到改良品种的目的。
2.杂交育种法:用不同品种杂交获得杂种后,在杂种后代进行选择以育成符合生产要求的新品种。这种方法是广泛应用而且有效的育种方法。
3.诱变育种法:是指人为地利用各种物理、化学、生物等因素来诱导生物发生变异,然后根据育种的目标从变异后代中选育新品种的方法。
4.单倍体育种法:常用于植物育种。一般指利用组织和细胞离体培养技术将植物的花药(花粉)、未受精的子房、胚珠进行培养,获得单倍体植株进行育种的方法。这种育种的方法与常规的杂交育种的方法结合,可以提高育种效率。
5.多倍体育种法:利用物理或化学的方法使植物细胞的染色体数目加倍获得多倍体植物。利用这种育种方法可以使种间不同物种杂交成功而获得多倍体新物种。
6.遗传工程(基因工程):指按照预先设计的生物施工蓝图对基因进行操纵,以达到定向改变生物性状的目的。具体来说,是使用“外科手术”的方法把人们所需要的甲种生物的基因(目的基因)通过一定的方法引入乙种生物的细胞中,让引入的基因在乙种生物的细胞中能够自我复制并正确的表达。通过这种方式获得新的生物品种。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。