首页 百科知识 世界上最伟大的科学家

世界上最伟大的科学家

时间:2023-05-13 百科知识 版权反馈
【摘要】:热质似乎是明摆着的事情,所以很少有科学家认为有理由去质疑它。1800年左右,他还在年青一代的英国科学家中选拔了新秀——其中包括戴维和杨。与此同时,法国科学家正在琢磨瓦特蒸汽机的理论基础。为了对他表示敬意,功或者能量的一个单位叫做焦耳。焦耳的工作直接导致了对热力学第一定律的承认,这是一条基本原理,因此,他也被看做是这一定律的提出者之一。在物理科学的历史中,热力学第一定律是最具革命性的思想之一。

不灭的能量

蒸汽和电,这是两股伟大的力量,推动了19世纪的车轮,振奋了19世纪的人心。就从19世纪开始,所有工业都受到瓦特的蒸汽机的影响,它还激发了人们对能量的理论研究。到了19世纪中叶,运输也得到了改造,英国所有主要港口都已由蒸汽铁路连接起来,北美大陆十字交叉的铁路网有近30 000英里的铁轨。到了19世纪末,电已经开始照亮世界,并且提供工业生产动力。

科学家们深入到这两大能源的核心之处,从而找到了一条通往自然奥秘的珍贵路径,借助于它,西欧、不列颠群岛、北美以及整个世界的工业发展面貌焕然一新。关键在于,正如布莱克及瓦特在上一世纪所发现的那样,要理解热及其本质和行为,最重要的是,理解热力学——研究热能怎样转变为其他形式的能量,其他形式的能量又是怎样转变为热能。

早期工作

对于18世纪大多数化学家和物理学家来说,热是一种看不见的“不可称量的”(即没有重量的)流体,叫做“热质”。当冰融解时,失去热质;当水结冰时,得到热质。水和热之间发生的是某种化学反应。这一理论有时也叫做热的物质论,用来解释某些现象似乎很有效:把一个热的物体放在冷的物体旁边,热似乎从一个物体流向另一个物体,就好像是流体一样。还有,物质加热时会膨胀,就好像有流体进入一样。热质似乎是明摆着的事情,所以很少有科学家认为有理由去质疑它。

但出生于美国的巴伐利亚选帝侯伦福德伯爵就是一个例外。1800年左右,他还在年青一代的英国科学家中选拔了新秀——其中包括戴维和杨。伦福德如此推测,用钝工具给炮筒钻孔应该比用锐工具钻孔产生更少的热(释放更少的热质);用锐工具应该释放更多的热质,因为它们切削材料更为有效。但事实正好相反。为了解释这一点,伦福德认为,热必定是一种运动,但这个思想不是一下子就能被人们接受。

然而随着19世纪的来到,道尔顿的原子论开始使这一思想变得可信,这就是,在一个充满气体的气球中,或者在一桶水中,或者在一块冰中,都有看不见的微小粒子在振动——振动得快,就表现为热;振动得慢,就表现为冷。

沿着这一思路就有了热动说,最早是由伯努利(Daniel Bernoulli, 1700—1782)在1738年提出的,但是当时对原子和分子这样的概念尚未认真考虑。在道尔顿之后,也有少数其他的人试图提出这一理论,但他们都不太知名,也没有得到更多关注。

与此同时,法国科学家正在琢磨瓦特蒸汽机的理论基础。瓦特是一个工程师,他的英国朋友都是实干家,许多人都是自学成才。而法国,因为有巴黎的综合理工学校,因而法国人更擅长理论科学,偏爱热质说。傅立叶(Jean-Baptiste-Joseph Fourier, 1768—1830)是一位对数学物理学带来强烈影响的物理学家,他在1822年发表论文《热的解析理论》,提出一种数学分析的新方法,首次清晰地阐述了科学方程必须具有一套自己的单位——这一思想被称为“傅立叶理论”。他还考察了通过固体的热流和笛卡儿提出的量纲理论。但是傅立叶对与热有关的机械力不感兴趣,实际上,他认为“动力理论”和“自然哲学”属于两个互不相关的不同领域。

与此同时,在德国,热动说正在逐渐奠定基础。化学家李比希的学生莫尔(Friedrich Mohr, 1806—1879)在1837年写道:

“除了已知的54个化学元素以外,在自然界里还存在一种媒介,叫做力[1];它在合适的条件下可以表现出运动、凝聚、电、光、节奏和磁……因此热并不是一种特殊的物质,而是物体最小粒子的振荡运动。”

所有这些思想都围绕着一个尚未得到充分证实的中心思想。正是一位名为焦耳(James Prescott Joule,1818—1889)的执著实验家为这一概念给出了定量数值。

焦耳的测量

焦耳着迷于对热的研究,他测量了每件东西的热。甚至在度蜜月时,他也不忘测量他和新婚夫人游览的瀑布顶上的温度,并与瀑布底部的温度相比较。

焦耳在1847年完成的经典实验中,先是测量一桶水的温度,然后把带翼的轮子放进水中。再让翼轮转动很长的时间,使水的温度逐渐升高。焦耳测量了翼轮所做的功和水温的升高,从而算出多少机械能产生多少热,如今这个值被称为“热功当量”。焦耳用了十年甚至更多的时间,测量了他能想到的各种过程所产生的热——包括机械的、电的、磁的——以及他能想到的各种媒介。

在焦耳之前还有其他人也试图获得热功当量的数值。伦福德做过,但数值偏高。迈尔(Julius Robert Mayer, 1814—1878)也计算过,但没有焦耳的准确。焦耳是当时做得最好的一位,而且他附有大量实验数据。为了对他表示敬意,功或者能量的一个单位叫做焦耳。

焦耳的工作直接导致了对热力学第一定律的承认,这是一条基本原理,因此,他也被看做是这一定律的提出者之一。

焦耳

第一定律

于是,在拉瓦锡的物质不灭原理之外,1847年,亥姆霍兹(Hermann von Helmholtz, 1821—1894)又增加了一条补充定律:“自然作为一个整体,拥有的能量不可能增加,也不会减少。”宇宙中的能量正如同物质一样,既不能创生,也不能破坏,能量也是如此(迈尔曾于1842年提出过能量守恒概念,要早于焦耳或亥姆霍兹的工作,但它所获得的证据支持不如亥姆霍兹)。

这一思想就叫做热力学第一定律,有时可简单归纳为:“无不能生有”,或者用另外一句话来说,不能以少获多。也就是说:

热能输入=有用能+废能

正如布莱克和瓦特所见,热机(瓦特的蒸汽机是第一个成功的例子)可以把气体中储存的热能转变为涡轮和活塞中的动能。也就是说,由于加热后气体膨胀,储存在蒸汽中的热能可以转变为运动。这个系统中最初的能量来源是燃料——木材或者煤炭——中的化学势能,用它产生了蒸汽。

在物理科学的历史中,热力学第一定律是最具革命性的思想之一。正如科学史家克朗比(Alistair Cameron Crombie, 1915—1996)所说:“它的含义和它提出的问题,主宰了从法拉第和麦克斯韦的电磁学研究到1900年普朗克引入量子理论之间这段时期里的物理学。”随着20,世纪爱因斯坦物理学的出现,将会证明,能量和物质概念需要放到一起来考虑,显而易见的是,能量有时可以转变为物质,物质也可以转变为能量。

正如麦克斯韦在对亥姆霍兹的颂词中所写:

亥姆霍兹是能量守恒原理的奠基人之一,他也因对眼科学、解剖学和生理学的贡献而知名。

“要评价亥姆霍兹《论力的守恒》这篇论文的科学价值,我们必须追问热力学和近代物理学其他领域最伟大发现的发现者们,这篇论文他们读过多少遍,在他们的研究生涯中,他们多少次感受到,亥姆霍兹有分量的叙述作用于他们的心头,就像是不可阻挡的驱动力。”

在他的晚年,亥姆霍兹成了量子理论的创建者普朗克(Max Planck, 1858—1947)的导师,通过普朗克,亥姆霍兹的影响在20世纪还将进一步延伸。

第二定律

不同于傅立叶,法国工程师卡诺(Nicolas-Léonard Sadi Carnot, 1796—1832)的研究方法更为实际,他把蒸汽机与水轮联系在一起——这一类推有些问题——起初他提出的是这一想法:蒸汽机锅炉释放的热量等于更低温度下冷凝器获得的热量。也就是说,没有热量损失。虽然事实并不是这样,但是卡诺在火发出的热、蒸汽的压强和机器的机械运动之间建立了重要联系。他认识到,一台蒸汽机的能量输出取决于锅炉的高温和冷凝器的低温之差以及流经两者的热量。他猜测,宇宙的总能量是常数,能量只是从一种形式转变为另一种形式。遗憾的是,卡诺在36岁时死于霍乱,没有机会进一步发展他的思想。他的思想1824年在他唯一的著作《论火的动力》(On the Motive Power of Fire)中发表,对后人产生相当深远的影响。

德国物理学家克劳修斯(Rudolf Clausius, 1822—1888)不是实验家,他的杰出天赋表现为善于对其他科学家的结果作出解释和进行数学分析。1850年,克劳修斯得出结论,热不能自己从一个物体传给温度更高的另一个物体。这一陈述后来就叫做热力学第二定律,被认为是 19世纪物理学另一项重大发现。

爱尔兰出生的汤姆生(William Thomson, 1824—1907),后来在苏格兰以拉格斯的开尔文勋爵闻名,这两个称呼常常并用。他综合了卡诺和焦耳的思想,在1851年发表论文,论述热转变为机械功的可逆性,从而对热的动力学理论也作出了贡献。这是热力学第二定律的另一种表达方式。由于这一贡献,与克劳修斯一起,他也被认为是这一原理的发现者之一。

克劳修斯

汤姆生

热力学第二定律可以简单说成是:不能打破平衡。假设有一位潜水员站在深水池旁,此时潜水员具有重力势能,当他或她跳下去时,能量转变为动能,当潜水员撞击水面时,动能又转变为水的热能。但这个过程不能自发地逆转(至少一般不能),能量转变有特定的方向。尽管有可能看到潜水员又返回到水池边,但那是因为用上了某种跳簧或者弹簧或者起重机。要么潜水员搭乘沙滩车才能返回。或者,再举一个例子,热汤可以自发地变冷,但是冷汤却不能变热,除非从外部热源加热。

另一种表述热力学第二定律的方式是:在一个密闭的系统中——没有外部能源——熵总是趋向于增加。熵是一个系统无序性的度量:越是无序,熵越高。另外,因为熵总是趋向于增加,热能不会从更冷的地方流向更热的地方(分子和原子在更冷的固体中要比在更热的液体和气体中更为有序),因此一般说来,自然过程总是趋向于更大的无序。

在某种程度上这意味着,没有来自太阳的能量,地球很快就会衰竭。最后太阳,甚至可能整个宇宙,会耗尽可用能源而灭亡。或者,换句话说,不管你本周把房间整理得多干净,下周你仍然需要重新整理。

气体运动论

热质说终于在1866年左右走到了尽头,因为麦克斯韦和玻尔兹曼(Ludwig Boltzmann, 1844—1906)各自用不同的方程式描述气体的行为,其完善性超过前人。麦克斯韦说,气体的温度并不反映气体所有分子的运动速率是均匀的,它反映的是这些运动在所有方向和所有速度上的平均统计值。他解释说,当气体加热时,分子运动得更快,互相碰撞也就更多,而碰撞增加了气体的压强。

热力学的伟大时刻

1822年

·傅立叶发表热流方程。

1824年

·卡诺的理论成为克劳修斯和开尔文独立提出的热力学第二定律的基础。

1847年

·焦耳在实验基础上建立了热的机械论(“热功当量”)。

·亥姆霍兹勾画出热力学第一定律(能量守恒定律)。

1850—1851年

·克劳修斯和汤姆生(开尔文勋爵)提出热力学第二定律。

大约1860年—1870年

·麦克斯韦和玻尔兹曼各自建立了气体的运动论。

1871年

·麦克斯韦在《热的理论》 ( Theory of Heat)中提出麦克斯韦妖。

麦克斯韦妖

1871年,麦克斯韦发明了一个小精灵——后来就叫做麦克斯韦妖——用来说明熵和气体中热运动论的统计性质。想象有一个二室的房子,气体均匀地分布在两室里。两室之间只有一个活动门相通。正如麦克斯韦的理论所描述的,两室中的气体分子,有些运动得很慢,有些则很快。当分子走过时,精灵抓住慢的把它送到另一室,又把另一室的快分子抓住通过活动门送到第一室。用这一方式,最后第一室将充满热(运动快的)分子,而第二室充满冷(运动慢的)分子。如果精灵真的存在(当然是不可能的),加热一间房子就可以不要任何能量。

物理学经过了70年的时间,研究热的本质及其与其他能量形式的相互关系,这才摆脱了18世纪的热质说。基于原子论的威力并且通过运用数学和模型以及仔细的实验,这才获得两个永恒的原理,从而为热力学机制提供了更为扎实深刻的认识。

【注释】

[1]德文的“力”字,同时也表示能量。——译者注

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈