首页 理论教育 熵概念的刚性

熵概念的刚性

时间:2023-01-31 理论教育 版权反馈
【摘要】:关于整个宇宙的熵的问题,暂且放到一边。原因在于,不同粗粒化区域倾向于占据悬殊极大的体积,其边界的细微的重新划分对其赋予的熵值不会产生显著的变化。熵之所以具有这种刚性,就是因为我们面对的粗粒化区域的数量很大,尤其是不同区域尺度的悬殊很大。于是,我们再一次看到,系统的熵的概念是十分刚强的——尽管定义并不十分严密——这都是因为粗粒化区域数量巨大而不同区域的体积相差十分悬殊。
熵概念的刚性_第一推动丛书宇

关于整个宇宙的熵的问题,暂且放到一边。现在可以只管玻尔兹曼公式的值,因为它为我们提供了一个极好的概念,说明物理系统的熵到底应该定义成什么。玻尔兹曼是在1875年提出那个定义的,在前人的基础上大大前进了一步,从而我们现在才可能将熵的概念用于最普遍的情形[1.5],而无需什么假定,例如要求系统处于什么特别的稳定状态之类的。不过,这个定义也有模糊的地方,主要在于对“宏观参数”的意义有不同的认识。例如,我们可以想象未来有可能测量流体状态的很多细节,而在今天它们是“不可测量的”。不仅是测量诸如压力、密度、温度和流体在不同位置的速度,未来还可能高度精确地确定流体分子的运动,甚至测定流体内特定分子的运动。于是,相空间的粗粒化必然要比过去精细得多。结果,这个新方法所确定的流体的某个特殊状态的熵,可能会比以前确定的熵小一些。

有些科学家提出[1.6],像这样用新方法来确定系统更详尽的细节,总会使测量仪器的熵增大,它将弥补因为精密测量而必然导致的系统熵的减小。于是,精细的系统测量也会在总体上导致熵的增大。这是非常合理的,但即使我们考虑这一点,玻尔兹曼的熵定义仍然有一点儿模糊。例如,整个系统的“宏观参数”由什么构成,我们并没有客观的标准,而且也几乎不可能通过那些思考来澄清。

19世纪大数学物理学家麦克斯韦(James Clark Maxwell,他的电磁学方程我们已经在前面引介过了,见1.1和1.3节)曾想象过这类事情的一个极端例子。他构想了一个“小妖”,她能通过打开或关闭一扇小门来为单个分子引路。这样,用于气体本身的第二定律就失灵了。不过,为了考虑整个系统,将麦克斯韦小妖的身体也作为一个物理实体包括在内,那么我们的图景中就必须显现小妖的亚微观组成,倘若这样,第二定律依然能保住。

更现实地说,我们设想用某个小小的机械装置来替代小妖,然后我们可以说第二定律对整个结构依然成立。然而,在我看来,这种想象并没恰当地解决宏观参数由什么构成的问题,而且那种复杂系统的熵的定义,多少还是有点儿神秘。像流体熵那样显然确切定义了的物理量,竟要依赖于当下的技术状态,确乎有点儿奇怪!

然而值得注意的是,在通常的方式下,如此的技术进步,能给可能赋予系统的熵值带来多少改变呢?整体说来,以那种方式重新划分粗粒化区域的边界,和改进技术一样,只能很小地改变系统的熵值。我们必须记住,鉴于测量仪器在任何时候所能达到的精度,为系统赋予的熵的精确值可能总会存在一定的主观性,但我们不会因为这个理由而认为熵不是有物理意义的概念。事实上,在通常情况下,那种主观性的影响是微乎其微的。原因在于,不同粗粒化区域倾向于占据悬殊极大的体积,其边界的细微的重新划分对其赋予的熵值不会产生显著的变化。

为具体感受这一点,我们再来看红蓝墨水的简化图像。假定它有1024个组成部分,占据着相同数量的红色和蓝色小球。如果在一个105×105×105的立方格子里蓝色球的比例在0.999和1.001之间,我们就认为那个位置是紫色的。而如果用更精密的仪器,那么我们能在更精细的尺度上更加精确地判断红蓝球的比例。假定只有当红球与蓝球的比例在0.9999和1.0001之间时(从而红球和蓝球的数量在万分之一的精度上相等)——比前面要求的精度高10倍——我们才认为混合体是均匀的,而且还假定检验的区域只需要原来尺度的一半——即体积为原来要求的八分之一。尽管这样能把精度提高很多,但我们发现为“均匀紫色”状态所赋予的“熵”(即满足条件的状态数的对数)几乎没有什么变化。所以,“改进技术”不会有效改变我们在这种情形下所得到的熵的数值。

这当然只是一个“玩具模型”(而且是构形空间而不是相空间的玩具模型),我们用它来强调这样的事实:在确定“粗粒化区域”过程中的“宏观参数”的精度改变,不会引起显著的熵值的改变。熵之所以具有这种刚性,就是因为我们面对的粗粒化区域的数量很大,尤其是不同区域尺度的悬殊很大。更现实的情形,我们可以考虑洗澡时候的熵增。为简化起见,我不想估算真正的洗澡过程的熵增(尽管它并非微不足道),而只关心冷热水混合(在浴缸里混合或在水龙头里混合)时发生的事情。我们可以合理假定,热水流出时的温度为50℃,而冷水为10℃,浴缸里的水的体积为150升(一半热水,一半冷水)。结果,熵增大约是21407焦/开,相当于我们在相空间的点从一个粗粒化区域移动到一个大1027倍的区域!至于粗粒化区域的界线该精确划在什么地方,随你怎么划,只要看起来合理,都不会对这样尺度的数字产生大的影响。

还有一个相关问题需要在这儿提出来。我前面说的仿佛意味着粗粒化区域定义明确而且边界确定,但严格说来,不论我们用什么可能的“宏观参数族”,情况都没那么简单。实际上,不论粗粒化区域的边界划在哪儿,如果我们考虑相空间中靠得很近的两点(分别在边界的两边),则它们几乎代表同一个状态,从而有着同样的宏观表现。可是从所属不同粗粒化区域来看,这两个点却是“可以宏观区分的”![1.7]为解决这个问题,我们可以要求在粗粒化区域的边界处存在一个“模糊区”。另外,考虑到作为“宏观参数”的量的主观性,我们干脆就不管相空间中处于“模糊边界”的点(见图1.12)。我们有理由认为,与粗粒化区域的体积比起来,那些点占据的相空间体积是微不足道的。所以,不论把边界附近的点划归哪个粗粒化区域,都是无关紧要的,不会真的给系统在通常情形下的熵值带来什么影响。于是,我们再一次看到,系统的熵的概念是十分刚强的——尽管定义并不十分严密——这都是因为粗粒化区域数量巨大而不同区域的体积相差十分悬殊。

图1.12 分隔不同的粗粒化区域的边界的“模糊区”。

尽管说了那么多,我们还要指出,在很多特别难以把握的情形下,诸如“宏观不可区分”之类的粗糙概念看起来就不够用了,甚至会给熵带来相当错误的答案!一种情形出现在用于核磁共振(NMR)的自旋回波现象[哈恩(Erwin Hahn)在1950年第一次发现的]。在这个现象里,原先处于某个特殊磁化态(核自旋[1.8]近似排列在一个方向)的材料,会在一个变化的外加电磁场的影响下失去磁化;然后,由于大量不同速率的自旋复杂地组合在一起,有不同的速率,自旋核将呈现杂乱无章的构形。但是,如果这时候小心地将外场倒转,那么所有核自旋都会回到原来的状态,于是,初始的磁化态奇迹般地恢复了!从宏观测量来看,熵在系统向中间态(核自旋杂乱的态)转化的过程中似乎是增大了——符合第二定律——但是当核自旋在倒转的外加电磁场作用下重新获得在中间态失去的秩序时,第二定律似乎也被彻底地颠覆了,因为在最后这个过程中,熵减小了。[1.9]

事情是这样的:尽管自旋在中间状态看起来杂乱无序,在那些杂乱的自旋排列中却存在着一个精确的“隐序”,只有当外磁场的运动模式发生反转时,这个隐藏的秩序才会显露出来。类似的情形还出现在CD和DVD光碟中,任何寻常的“宏观测量”都不可能揭示贮存在光碟里的丰富信息,但为解读那些光碟而专门设计的播放器,却能毫不费力地读取其中的信息。为探测隐序,我们需要一种能适用于大多数情形的、比“普通”宏观测量更为精巧的“测量”形式。

图1.13 两个紧贴的玻璃管,其间灌注黏性液体和一条色带。

其实,为了发现这类普遍的“隐序”,我们并不必真的像考察小磁场那样考虑任何精巧的技术。基本类似的事情也发生在更简单的装置(图1.13,详情见注释[1.10])。这个装置由两个圆柱形玻璃管组成,其中一个放在另一个的内部,两管之间留有很小的空隙,均匀注入些许黏性液体(如甘油)。内管接一个手柄,可以让它相对于固定的外管旋转。实验开始时,将一条发亮的红色染料细带插入液体,与圆柱轴线平行(图1.14)。然后,摇动手柄转几圈,染料带会扩散开去,沿着圆柱均匀分布,而先前的色带不留下一点儿痕迹,液体却变成淡淡的红色。不管我们选择什么合理的“宏观参数”来确定染红的黏性液体的状态,熵看起来都增大了,因为现在染料已经均匀扩散到流体了。(这儿的情形看起来很像我们在1.2节里考虑的混合红蓝墨水时发生的事情。)然而,假如现在沿反方向摇动手柄,转动同样的圈数,我们会惊讶地发现,红色的染料带又重新出现了,而且几乎和它在初始的地方一样清晰!如果说熵在第一次摇动时真的增大到了那个状态下的值,而在重新摇动后它又几乎回到了初始的值,那么重新转动的过程就严重颠覆了第二定律!

图1.14 手柄转动几圈使色带散开,然后反向转动同样的圈数,色带重新出现,从而违反第二定律。

在这两种情形下,通常都不认为第二定律真的被破坏了,而是这些情形下的熵的定义不够精密。在我看来,如果要求一个精确而客观的物理熵的定义,能适用于所有情形,能让关于它的第二定律普适地成立,那我们就捅了马蜂窝。我看不出有什么理由对熵的概念提那么多的要求:总要有精确的物理意义,要有明确的定义,要完全客观从而在某种绝对的意义上“自由地”回归自然[1.11],而且那个“客观的熵”几乎永远不会随时间而减小。对玻璃管间染红的黏性液体,或者核自旋的构形——尽管怀着对先前秩序的精确“记忆”,但看起来已经完全失去了组织——我们真的必须要一个满足它们的实实在在的熵概念吗?我看不出这有什么必要。熵当然是一个极其有用的物理概念,但我不明白为什么要为它赋予一个真正基本而且客观的物理角色。其实,在我看来,熵的物理概念的用处似乎主要源于下面的事实:对我们可能在真实的宇宙遭遇的系统来说,通常的“宏观”物理量的度量导致了不同的粗粒化区域,它们的体积相差很多个数量级。然而,还有一个更深层的问题:为什么它们在我们的宇宙中会相差那么多数量级?这些悬殊巨大的量揭示了我们宇宙的一个值得注意的事实,那才真的是确凿客观而且“自在”的——我们很快就会看到这一点——尽管我们承认我们的“熵”概念存在着主观性问题,但那只不过是漂浮在这个有着广泛用场的物理概念上的一层薄雾。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈