3.揭秘素数循环节与纯元数的内在关系
前面提到的定理:大于5的素数p的循环节含有9的因数,F(m)含有素因数p,即·p=9·F(m)(m个9),那么,9可以整除循环节,这就是循环节同纯元数的天然内在关系.现在通过实例进行实践应用.
素数29的循环节是0344827586206896551724137931,长度为28.循环节分解为素因数的积:
344827586206896551724137931=3×3×11×101×239×281×4649×909091×121499449.
将素因数分成两组:3×3×11×101×239×909091与281×4649×121499449,
分别求积,得到3×3×11×101×239×909091=2172510217251, ①
与281×4649×121499449=158723113690681. ②
根据素数循环节的性质,有等式队列:
2172510217251×158723113690681×29=9999999999999999999999999999
2172510217251×158723113690681×29×2=19999999999999999999999999998
2172510217251×158723113690681×29×3=29999999999999999999999999997
2172510217251×158723113690681×29×4=39999999999999999999999999996
2172510217251×158723113690681×29×5=49999999999999999999999999995
2172510217251×158723113690681×29×6=59999999999999999999999999994
2172510217251×158723113690681×29×7=69999999999999999999999999993
2172510217251×158723113690681×29×8=79999999999999999999999999992
2172510217251×158723113690681×29×9=89999999999999999999999999991
这个等式队列的左边看似复杂的数字相乘,“复杂”在于29的循环节素因数被分成不同的两组.等式队列的右边第一行是9的纯元数(28个9),如果除以9,就是1的纯元数(28个1).现在我们探究29的循环节与28个1的纯元数F(28)的内在关系:
我们将29的循环节的素因数分解与28个1的纯元数的素因数分解进行比较:
344827586206896551724137931=3×3×11×101×239×281×4649×909091×121499449,
1111111111111111111111111111=29×11×101×239×281×4649×909091×121499449.
两者只有3×3同29不一样,其他素因数都相同.两者是“你中有我,我中有你”.
这也是素数乘以它的循环数得到9的纯元数的奥妙所在!!!我们将上面的分组的第①组的3×3改为29,其他不变,即
3×3×11×101×239×909091=2172510217251→29×11×101×239×909091=7000310700031.
可以得到与上面不同的等式队列,但是左边的一个因数以及右边却相同:
7000310700031×158723113690681×9=9999999999999999999999999999
7000310700031×158723113690681×9×2=19999999999999999999999999998
7000310700031×158723113690681×9×3=29999999999999999999999999997
7000310700031×158723113690681×9×4=39999999999999999999999999996
7000310700031×158723113690681×9×5=49999999999999999999999999995
7000310700031×158723113690681×9×6=59999999999999999999999999994
7000310700031×158723113690681×9×7=69999999999999999999999999993
7000310700031×158723113690681×9×8=79999999999999999999999999992
7000310700031×158723113690681×9×9=89999999999999999999999999991
观察如下的“双肩挑”的等式队列构成的数字大厦:
20964360587×53=1111111111111=79×14064697609
20964360587×106=2222222222222=158×14064697609
20964360587×159=3333333333333=237×14064697609
20964360587×212=4444444444444=316×14064697609
20964360587×265=5555555555555=395×14064697609
20964360587×318=6666666666666=474×14064697609
20964360587×371=7777777777777=553×14064697609
20964360587×424=8888888888888=632×14064697609
20964360587×477=9999999999999=711×14064697609
当你看到这个“双肩挑”的等式队列的时候,也许会想:它是怎么来的?要解开它的奥妙,先用素因数分解的办法,从上到下抽取样本就能够解密.
素数53的循环节是0188679245283=3×3×79×265371653,长度是13,纯元数F(13)分解素因数是F(13)=1111111111111=53×79×265371653.
将3×3暂搁一边,265371653×79=20964360587,265371653×53=14064697609,
两式的左边隐蔽起来,只出现20964360587与14064697609,各自乘以53与79就有了等式队列的第1行.
20964360587×53=1111111111111=79×14064697609,
因此,上述等式队列的来源是素数53的循环节与F(13)=53×79×265371653的素因数组合构成.
第2行的106=53×2,所以,等式队列的头9行是第1行依次乘以1、2、3、…、8、9而得.
以下的等式队列是由上面衍生出来的,可谓层出不穷.
看起来似乎有大量的计算.但是您仔细观察,找出数字排列规则,只需进行部分计算就可以得到等式队列.不过,一定要进行随机抽样验算,并且检查“队伍”是否整齐.
以下的等式队列是由上面衍生出来的,是谓“双肩挑”等式队列:
20964360587×106×9=19999999999998=9×158×14064697609
20964360587×159×9=29999999999997=9×237×14064697609
20964360587×212×9=39999999999996=9×316×14064697609
20964360587×265×9=49999999999995=9×395×14064697609
20964360587×318×9=59999999999994=9×474×14064697609
20964360587×371×9=69999999999993=9×553×14064697609
20964360587×424×9=79999999999992=9×632×14064697609
20964360587×477×9=89999999999991=9×711×14064697609
20964360587×477×99=989999999999901=99×711×14064697609
20964360587×477×999=9989999999999001=999×711×14064697609
20964360587×477×9999=99989999999990001=9999×711×14064697609
20964360587×477×99999=999989999999900001=99999×711×14064697609
20964360587×477×999999=9999989999999000001=999999×711×14064697609
20964360587×477×9999999=99999989999990000001=9999999×711×14064697609
20964360587×477×99999999=999999989999900000001=99999999×711×14064697609
20964360587×477×999999999=9999999989999000000001=999999999×711×14064697609
20964360587×477×9999999999=99999999989990000000001=9999999999×711×14064697609
20964360587×477×99999999999=999999999989900000000001=99999999999×711×14064697609
20964360587×477×999999999999=9999999999989000000000001=999999999999×711×14064697609
20964360587×477×9999999999999=99999999999980000000000001=9999999999999×711×14064697609
提供等式队列,请您揭开其中奥秘:
(1)等式队列
73×137=10001 9901×101=1000001
146×137=20002 19802×101=2000002
219×137=30003 29703×101=3000003
292×137=40004 39604×101=4000004
365×137=50005 49505×101=5000005
438×137=60006 59406×101=6000006
511×137=70007 69307×101=7000007
584×137=80008 79208×101=8000008
657×137=90009 89109×101=9000009
89109×909=81000081
89109×9999=891000891
89109×100899=8991008991
89109×1009899=89991089991
89109×10099899=899991899991
89109×100999899=8999999999991
89109×1009999899=90000080999991
89109×10099999899=900000890999991
89109×100999999899=9000008990999991
(2)“双肩挑”的等式队列
101020202020101×99990001=10101010101010101010101=990000999901×10203030201
202040404040202×99990001=20202020202020202020202=1980001999802×10203030201
303060606060303×99990001=30303030303030303030303=2970002999703×10203030201
404080808080404×99990001=40404040404040404040404=3960003999604×10203030201
505101010100505×99990001=50505050505050505050505=4950004999505×10203030201
606121212120606×99990001=60606060606060606060606=5940005999406×10203030201
707141414140707×99990001=70707070707070707070707=6930006999307×10203030201
808161616160808×99990001=80808080808080808080808=7920007999208×10203030201
909181818180909×99990001=90909090909090909090909=8910008999109×10203030201
(3)素数353、449、641的循环节长都是32,可以得到如下的等式,请您揭开其中的奥秘,并且造就您的等式队列:
31476235442241107963487566887×353=24746349913387775303142786439×449=17334026694401109377708441671×641 188888887×578991258731089×158497×641=188888887×578991258731089×226273×449
=188888887×578991258731089×287809×353
提供1000以内素数循环节(长度不大于35的)及其素因数分解列表,作为素材,建造你自己的等式队列和数字大厦.
★素数循环节的素因数分解详见随书光盘
资料:素数循环节的素因数分解
(续表)
【注释】
[1]马长冰.种书集.福建:福建人民出版社.1996
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。