罗巴切夫斯基
罗巴切夫斯基1793年出生在一个农民的家庭,父亲去世后,他的母亲仍将他送入学校接受教育。进入喀山大学之后,罗巴切夫斯基显露出了他的数学才华,并深得教授们的青睐。大学毕业后,罗巴切夫斯基留在母校从事数学的教学与研究工作。
当时,欧洲对几何学的教材改革对罗巴切夫斯基有很大的影响,并且吸引了罗巴切夫斯基的注意。在几何学的研究中,罗巴切夫斯基很不满意作为欧几里得几何体系中基础的第5公设。开始,罗巴切夫斯基也试图证明第5公设,虽然未能获得成功,但是他依然在思索这一问题,在孕育新的思想。后来,他回忆起当时的情景时写道:“大家知道,直到今天为止,几何学中的平行线理论还是不完全的。从欧几里得时代以来,2000年的徒劳无益的努力,促使我怀疑在概念本身之中并未包括那样的真实情况,它是大家想要证明的,也是可以像别的物理规律一样单用实验(譬如天文观测)来检验的。最后,我肯定了我的推测的真实性,而且认为困难的问题已经完全解决了。于是,我在1826年写出了关于这个问题的论证。”
的确如此,1826年,罗巴切夫斯基首先在喀山大学数理系发表了他的非欧几里得几何理论。这个理论非常奇怪,首先他将第5公设改造成新的公设,即:
通过一条已知直线外一已知点,至少可以画两条直线平行于该直线。
把这个公设同欧几里得的其他公设合并在一起,就可以得到一种新的奇特的几何体系。其中有些命题的结论是很奇怪的,例如,罗巴切夫斯基几何的三角形,其内角和是小于180度的。
20多年之后,德国数学家黎曼改造的第5公设则写作:
通过已知直线外一点,不能画一条直线与已知直线平行。
同罗巴切夫斯基几何不一样的是,黎曼几何的三角形,其内角和是大于180度的。
然而,在鲍耶和罗巴切夫斯基之前,伟大的数学家高斯已经构造出非欧几里得几何,非欧几里得几何这个名字就是高斯最先使用的。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。