首页 理论教育 青蛙的对称跳

青蛙的对称跳

时间:2023-02-13 理论教育 版权反馈
【摘要】:若青蛙第1985步对称跳之后到达P1985,问此点与出发点P的距离为多少厘米?类似地可知y6=0,这表明P6=P,也就是说,经过关于A,B,C的6次对称跳之后,青蛙又回后到了原出发点,这又可以说成:这样的对称以6为周期。

青蛙的对称跳

1985年,第三届五四青年智力竞赛中有这样一道题:

地面上有A、B、C3点,一只青蛙位于地面上距离C点为0.27米的P点,青蛙第一步从P跳到关于A的对称点P1,我们把这个动作说成是青蛙从P点关于A点作“对称跳”;第二步从P1出发对B点做对称跳到P2;第三步从P2点出发对C点做对称跳到达P3;第四步从P3再对A做对称跳到达P4,……,按这种方式一直跳下去。若青蛙第1985步对称跳之后到达P1985,问此点与出发点P的距离为多少厘米?

要在短时间内把1985步对称跳都做出来是困难的,这里面一定隐含着某种规律。

设想我们在地面上建立了一个直角坐标系,使出发点P正好是坐标原点,并设A(a1,a2)B(b1,b2),C(c1,c2)。

根据对称跳的定义,P和P1关于A点对称。由于P(0,0),则点P1的坐标为(2a1,2b1)。设P2(x2,y2),由于B是P1与P2的中点,则x2=2b1-2a1,y2=2b2-2a2。实际上,我们只须关心点的第一个坐标。

设Pi(xi,yi),i=1,2,3,4,5,6,我们又有

x3=2c1-x2=2(c1-b1+a1),

x4=2a1-x3=2(b1-c1),

x5=2b1-x4=2c1

x6=2c1-x5=0。

类似地可知y6=0,这表明P6=P,也就是说,经过关于A,B,C的6次对称跳之后,青蛙又回后到了原出发点,这又可以说成:这样的对称以6为周期。由于1985=6×330+ 5,所以经过1985步对称跳,实际上相当于只做了5次对称跳,或者说只差一步就跳回到原点,它与P是关于点C对称的两点,因此。

P1985与P的距离=P5与P的距离

=2×(P与C的距离)=2×0.27米

=0.54米=54厘米。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈