从田忌赛马说起
在我国古代春秋战国时期,齐国国王与大将田忌赛马,看谁的马跑得快。田忌答应后,双方约定各自出上、中、下三个不同等级的马各一匹,每次比赛各出一匹马,一共比三次,输者要付给胜者千金。
可是田忌的各个等级的马,都比齐王同一等级的马差些,所以田忌每次从三种马中各出一匹参加比赛总是输。
我们从下面表中看出,齐王先出上马,接着出中马,最后出下马。在这种条件下,田忌的出马次序有6种:
齐王 田忌:
上 上上 中中 下下
中 中下 上下 上中
下 下中 下上 中上
比赛结果 负负 负负 胜负
要是田忌每次随便安排一个出马次序,他获胜的可能性是,负的可能性是。
田忌的宾客孙膑发现齐王每次都按上、中、下的顺序出马,便建议田忌按下、上、中的顺序出马。结果获胜的可能性变成了100%。当然,要是双方不暴露出马的顺序,田忌取胜的可能,大致不过是罢了。
乒乓球团体赛,比田忌赛马问题复杂得多。每队出三个人,谁拿下五盘谁就取胜。要是双方实力相当,怎样安排队员和出场次序,是领队和教练的大难题。首先,对方并不像齐王那样呆,预先把自己的出场队员和次序暴露出来,所以双方对阵的可能组合方案很多,并且也都在捉摸着怎样对付对方。其次,乒乓球员不是马,竞技状态起伏较大,而且因球路、风格的不同,往往有甲克乙、乙克丙、丙克甲的局面。第三,双方都可能有互不摸底的队员出场,这就增加了安排出场顺序的复杂性。
1944年,美籍数学家冯·诺伊曼和摩根斯特发表了《博弈论和经济行为》一书,把打牌、下棋等的格局研究,发展成为处理竞争性行为的数学方法。他们的成就,鼓舞数学家们努力探索这一方法,去处理种种复杂的问题。
除正当的“竞争”之外,也有一些不正当的“竞争”。
在城镇乡村的大路旁边,有时可见到各种碰运气、赌输赢的小摊。其中的一种,叫做转糖摊。
转糖摊是一个固定不动的圆盘,盘上画了偶数个扇形格子,按次序编了号;圆盘中心伸出一根可以转动的轴,轴的上端向外垂直伸出一根悬臂,悬臂端吊一根绳子,绳头上有一根针;在偶数格子里各放一小块糖,在奇数格子里分别放值钱的物品。
谁给摊主几角钱,就可拨动悬臂转动一次。等停转后,指针指到哪格,便根据那格的数,从下一格起,按格往下数这个数,数到哪一格,放在格里的糖或者别的物品就归谁。比如说停在2,就从第三格起数二格,4格里的物品就归谁。
粗心大意的人会想:盘子上,单数双数格子各占一半,数到双数得一块糖,当然亏了;数到单数得一盒彩色铅笔什么的,可就赚了。几角钱不多,可以碰碰运气。
不错,单数格子确实有一半。可是,按照这样的数法,是怎样也数不到奇数格子上去的。
为什么呢?
道理很简单,因为
奇数+奇数=偶数;
偶数+偶数=偶数。
这就是说,不管指针指在奇数还是偶数,最后数到的总是偶数格,赚的可能性是零。
还有一种猜扑克的赌摊。赌主拿出5张不同花色点子的扑克牌,抽出一张给你看看,比如是红桃K;然后,他把5张牌的牌面朝下,在那里把5张牌颠来倒去、东插西放地调换位置,着实拨弄了一番后,叫你猜哪一张是红桃K。猜错了,你给他一块钱;猜对了,他给你两块钱。
粗心大意的人,看见有人猜中,以为有利可图,也去碰碰运气。仔细一想,不对了。就算赌主没有作弊,猜对的可能性是,平均每次可以赢角;输钱呢?五次输四次,平均每次输角。赌的次数越多,每次输的平均值就越接近,而>。
象棋残局摊的赌博要复杂一些。摊主摆了一付象棋残局,吆喝别人与他对弈。表面看来,这是业余爱好,高尚娱乐。其实,下输了要付一块钱;下和或者下赢,他就送你价值二块的一盒象棋。你以为自己的棋下得不错,想去显显本事,往往一输到底。
红蓝两方,听凭选择,为什么会老输呢?
原来这付象棋残局是经过精心挑选的,要是双方都走棋无误,绝大可能是和局。每一步棋应该怎样走法,摊主早背得滚瓜烂熟。
我们假定这个残局,从开局到定局共有10个回合,又假定你每一步棋走对的可能性是,走错的可能性也是。
这样,你能够与摊主弈和的可能性是()10=。
即使你每步走对的可能性是,和棋的可能性还远远不到。
或许你会认为低估了你的棋艺水平。对大多数人来说,已经是十分宽大的估计了。
不可否认,能够与摊主弈和的人也是有的,那是极少数对中国象棋有造诣的人。可是,这样的人很少去光顾这类场所,摊主大可不必担心。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。