图1.4 甲烷蒸汽转化时催化剂粒度的影响
(a)催化剂粒度对反应速率的影响;(b)催化剂的表面利用率
从热力学分析可知,反应(4)为吸热、体积增加的可逆反应,反应(5)和反应(6)为放热、体积缩小的可逆反应,因此温度和压力对上述反应的析碳有不同影响。为控制析碳,主要通过增加水蒸气用量以调整气体组成和选择适当的温度、压力来解决。
动力学研究表明,上述3个反应都是可逆反应,在转化过程中是否有碳析出,还取决于碳的沉积(正反应)速率和脱除(逆反应)速率。从碳的沉积速率看,CO歧化反应(5)生碳速率最快;从碳的脱除速率看,对于高活性催化剂,碳与水蒸气的反应[即反应(6)的逆反应]速率最快,且碳与二氧化碳作用[即反应(5)的逆反应]的反应速率比其正反应速率快10倍左右。因此,从动力学分析可知,只有用低活性催化剂时才存在析碳问题。
防止析碳的主要措施是适当提高水蒸气用量,选择适宜的催化剂并保持活性良好,控制含烃原料的预热温度不要太高等。生产中出现析碳的部位常在距离反应管进口30%~40%的一段,这是由于该段甲烷浓度和温度都较高,析碳反应速率大于脱除碳速率,因而有碳析出。由于碳沉积在催化剂表面,有碍甲烷蒸汽转化反应进行,因而在管壁会出现高温区,称为“热带”。可通过观察管壁颜色,或由反应管阻力变化加以判断。若已有析碳,可采取提高水蒸气用量、降压、减量的办法将其除去。当析碳较重时,可停止送原料气,保留蒸汽,提高床层温度,利用反应(6)的逆反应除碳,也可采用空气与蒸汽的混合物“烧碳”。
1.2.4 气态烃类蒸汽转化催化剂
烃类蒸汽转化是吸热可逆反应,高温对反应有利。但即使在1000℃的温度下反应速率也很慢,必须用催化剂来加快反应。
烃类蒸汽转化催化剂要求耐高温性能好、活性高、强度好、抗析碳性能优。从技术经济上综合考虑,目前工业转化催化剂都采用镍催化剂,镍是其唯一的活性组分。在制备好的镍催化剂中,镍是以NiO状态存在,体积分数以4%~30%为宜。一般镍含量高的催化剂活性也高。为使镍晶体尽量分散、达到较大的比表面积并阻止镍晶体的熔结,常用Al2 O3,MgO,CaO等作为载体,这些组分同时还有助催化作用,可进一步改善催化剂的性能。
制备好的镍催化剂中镍通常以NiO的形式存在,没有催化活性,使用前必须进行还原。工业生产中,常用的还原剂有氢气加水蒸气或甲烷加水蒸气。加入水蒸气是为了提高还原气流的气速,促使气流分布均匀,同时抑制烃类的裂解。为保证还原彻底,还原温度以高一些为好,一般控制在高于转化的温度。已还原的活性镍催化剂在设备停车或开炉检查时,为防止被氧化剂(水蒸气或氧气)迅速氧化而放热熔结,应当有控制地让其缓慢降温和氧化。
还原的活性镍催化剂对硫、卤素和砷等毒物很敏感。硫对镍的中毒属于可逆的暂时性中毒,已中毒的催化剂,只要使原料中含硫量降到规定的标准以下,催化剂的活性就可以完全恢复。硫对镍催化剂的毒害作用如图1.5所示。卤素也是镍催化剂的有害毒物,其作用与硫相似,也是属于可逆性中毒。但砷中毒属不可逆的永久性中毒,在砷中毒严重时必须更换催化剂。通常要求原料气中硫、卤素和砷的质量分数必须小于0.5×10-6。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。