多功能玻璃
一、光学玻璃
16世纪末至17世纪初,人们发明了望远镜和显微镜,这些光学仪器中都必须装配各种镜头,这些镜头都是用宝贵的天然水晶磨制而成的。
能不能用玻璃取而代之呢?当时的条件下根本不可能。经过千百年的努力,人们虽然掌握了制造透明玻璃的方法,但是,玻璃在熔炼时,总会留下许多缺陷,例如,玻璃中常常会夹带着一些气泡、灰色颗粒、小石子以及纹路等。这些缺陷都会改变光线前进的方向,怎么可以用来制造望远镜、显微镜的镜头呢?
天然石英或水晶,虽然纯净无瑕,却非常稀少。能不能研制出人造水晶玻璃呢?
300多年以前,英国人就开始了种种尝试,他们先后在玻璃中加入铅,消除了黑色,又用碳酸钾代替苏打,消除了因含铅造成的淡黄色,终于制成了一种酷似水晶的玻璃。不过,这种玻璃还是不能用来制造镜头——质地还是不够均匀,尤其是其中含有挥之不去的气泡。
还有没有办法加以改进呢?
质地不均匀的毛病不久就解决了,只需增加熔炼的时间;砂粒、石子也不难消除,只要选料精细、熔炼仔细便可。但顽固的气泡却怎么也没办法去除,以致当时的玻璃专家们认为。这就像出过天花的人脸上一定会留下麻子一样,是不可避免的。
不过,法国有一个叫纪南的钟表匠,却熔炼出了没有气泡和石子的镜头玻璃。他是怎样熔炼的呢?开始的时候,无人知晓这一秘密,就连他自己的儿子,他也三缄其口。
纪南临终之时,他才将儿子们召到床前,将熔炼镜头玻璃的秘密口授给了他们。他的儿子们继承父业,个个严守秘密,绝不流传给外人。
直到19世纪末,德国出现了一个天才的光学家,他叫阿贝尔,是一个纺织工人的儿子。阿贝尔经过长期研究,终于揭开了纪南的秘密,发明了优质光学玻璃的熔炼方法。阿贝尔的发明很快就被德国的蔡司一绍特公司高价收买了去。这家公司的保密工作做得比纪南的子孙还要好。
第一次世界大战期间,俄国以法国、英国同盟者的身份,在接受了极为苛刻的条件以后,才以极高的代价买到了制造光学玻璃的这一秘密。这一保守了几百年的秘密,说来十分简单——搅拌!只需在熔炼玻璃时加以搅拌即可。
此后,到了前苏联时期,彻底打破了法国人和德国人对制造光学玻璃的垄断,公开了这一秘密,使全世界玻璃制造行业都受了益。
二、耐火玻璃
自从人类有了玻璃这种材料,用它制作的各种物品如雨后春笋般日见增多。玻璃制品美观、轻盈、光滑,深受人们喜爱。但是,它也存在着不足之处,除了容易碰碎以外,一个最大的弱点便是怕热。普通玻璃杯如果放到火上烘烤,不一会儿就会爆裂;在冬天,甚至倒入一杯沸水,有时也会发生爆裂呢!
但是,人们却十分希望能有不会发生爆裂的玻璃新品种出现,尤其是与实验打交道的化学家,如果能一边加热,一边通过透明的容器观察化学反应过程,那该多好啊!
为了得到不怕热的玻璃,化学家们开始探索起玻璃怕热的原因。原因很快找到了,原来,玻璃和其他物质一样,都具有热胀冷缩的性质,而且普通玻璃受热膨胀得还挺厉害呢!
一般来说,膨胀并不会使物体发生破裂,因为有的物质传热快,短时间内各处都可同步膨胀,这便可避免破裂;有的物质传热虽然不快,却富有弹性,容易伸缩,因此也不会发生破裂。可悲的是,玻璃这种物质既传热不快,又缺少弹性,在受热时,接触高温的一边首先膨胀,另一边还依然如故,这岂有不破裂之理?
那么,玻璃受热膨胀的主要原因是什么?如果找到这一原因,设法加以克服,不就可以避免破裂了吗?化学家和玻璃制造专家们又开始了新的探索。结果,他们发现,玻璃受热发生剧烈膨胀的原因在于其中使用了苏打原料。制造“耐火玻璃”的关键便是要找到一种代替苏打的原料。
功夫不负有心人。玻璃专家们在试验了上百种物质、做了无数次实验以后,终于找到了一种较理想的物质——硼酸。试验表明,硼酸的膨胀度只有苏打的1%。
不久,一种硼酸多、苏打少的新型玻璃便诞生了。它的膨胀度为普通玻璃1/8,赢得了“耐火玻璃”的美誉。人们用它制成化学实验用的烧杯、烧瓶,制成普通的白炽灯泡,制成需要加热的食品器皿……
今天,石英玻璃成了一种更新的耐火玻璃,它的膨胀更小,更能经受热的考验,相信以后还会出现更好的耐火玻璃呢!
三、水玻璃
《最后的晚餐》是意大利文艺复兴时期大艺术家达·芬奇的优秀作品,被绘在米兰教堂的一堵墙上。可是,没过几年,这幅画上的颜料开始剥落,尤其是画的中下部,由于潮气侵袭,损坏得更快。据说,法国皇帝佛兰西斯克一世为了抢救这件珍宝,曾下令将这堵墙完整地运到法国巴黎,妥善地保存它,然而,这在当时是不可能的。
有没有可能发明一种东西能一劳永逸地保护这类艺术作品呢?许多人都在摸索着,试验着,法国明兴大学的福克斯教授便是其中之一。
1818年,福克斯教授在他的实验室里熔炼成了一种新玻璃,其原料采用的是沙粒和苏打,不含石灰石的成分。这种玻璃看上去和普通玻璃没什么区别,同样的坚硬、明亮和透明;不过,如果把它浸到热水中,过不多久,它就熔解了,成了一种灰色的粘性液体。根据这一性质,福克斯给它取了个名字,叫做“水玻璃”。
水玻璃具有十分奇特的性质,如果用它来调白垩粉,就会凝固起来变成坚硬的白垩石;如果将它涂到树皮上,树皮立刻就会包上一层薄而坚硬的玻璃膜,就像穿了一件玻璃外衣。
于是,福克斯很有把握地向壁画家们建议,在画画之前,先用水玻璃溶液刷一次墙,然后在墙粉中也掺一些水玻璃,待墙粉干了以后再描图绘画;最后,当壁画完成后,在其表面再涂一层水玻璃溶液,这样处理的壁画就可以大大延长保存的时间了。
同时,福克斯又用水玻璃抢救濒临毁坏的壁画,他将水玻璃溶液涂在壁画的表面,也取得了很好的效果。
以后,人们发现水玻璃还具有其他意想不到的功能呢!
例如,将鸡蛋在稀薄的水玻璃溶液中浸一下,蛋壳外就“穿”上了一件密不透风的“外套”,这种鸡蛋不用冷藏也可保鲜一年,而且风味丝毫不变;大炮、坦克、军舰表面涂上油漆是为了防止生锈,但油漆容易燃烧,如果在油漆中掺入水玻璃,那么普通的油漆也就具有耐火性了;60多年前,前苏联莫斯科正在修建地铁,有一次,当地铁通过共产国际大厦底下时,疏松的地层使大厦发生了倾斜,在这关键时刻,科研人员建议将水玻璃溶液通过管子注下地下,使原先松散的沙土凝结成一个整体,终于使大厦化险为夷。
四、红外玻璃和紫外玻璃
太阳光中除了可见光之外,还有一系列肉眼看不见的光线,“红外线”和“紫外线”便是主要的两种。
1800年,英国天文学家威廉·赫歇尔做了一个非常简单的实验,却获得了十分有意义的发现。这个演奏风琴出身的科学家,重复牛顿分解日光实验以后,在光谱的不同颜色区域各放一支温度计,检测其温度有什么不同。他发现光谱红色区的温度计水银柱升得高一些,但是,当他把一根温度计放在光谱红色区域之外时,一个奇怪的现象出现了:这个没有光照射的温度计水银粒竟然升高了,而且超过了红色光区域的温度。可以肯定,那里一定存在不可见的辐射,人们后来称之为“红外线”。
红外线的发现,自然引起了人们这样的疑问:紫外区是否也有看不见的辐射呢?但是温度计放在那里,一点变化也没有。原来,紫外线不能穿透玻璃棱境,而且太阳发射的紫外线比红外线多得多,大部分紫外线被大气层吸收掉了。不过,紫外线还是很快被人觉察到了。1801年,德国物理学家里特发现,硝酸银放在光谱的蓝色光和紫色光区域曝光以后会分解出黑色的金属银,如果把硝酸银放在紫外区域,它分解得更快,从而证实了紫外线的存在。
红外线、紫外线看不见、摸不着,如何对它们进行控制呢?化学家们不约而同地想到了玻璃,能不能发明出特别的玻璃仅让这些辐射通过,或者不让这些辐射通过呢?
经过一段时间的试验,他们首先发明了阻止红外线、通行可见光的一种蓝绿色玻璃,有人称它为“南方玻璃”或“热带玻璃”,当然正规的名称为“红外玻璃”,用这种玻璃制造灯泡,能大大减少红外线的辐射。
接着,化学家们又发明了一种阻止可见光、通过红外线的玻璃,这种玻璃含有锰,黑不溜秋的,看上去完全不透明。人们用锰玻璃制成特殊探照灯的滤光镜,即使里面点着大灯泡,外面也看不见丝毫光线,感到的只是阵阵热气。侦察员们正是借助这红外线来观察外部情况的。
红外线如此,紫外线也不例外!
化学家们发现,普通的窗玻璃本身就具有阻挡紫外线的功能,究竟是玻璃中的什么物质在起作用呢?经过层层分析,剔除了制造玻璃的原料沙子、苏打和石灰石,抓到的则是玻璃中含量微不足道的铁质。如何去除这些铁质,使普通玻璃也能透过紫外线呢?化学家们想到了铁的克星——硼酸,只要在玻璃中加入少量硼酸,紫外线就可以通过玻璃了。于是,“紫外玻璃”诞生了。
那么,如果想发明一种完全不会透过紫外线的玻璃,只要在玻璃中多加些铁质就行了吗?不行!因为铁质一多,玻璃的颜色就会变成红色,这样又会阻挡可见光的通过。经过无数次的试验,化学家们终于找到了一种稀土金属的混合物。将这种混合物掺入玻璃,就可制造出完全阻挡紫外线的无色玻璃了。由于这种玻璃最适合用于博物馆、美术馆、档案馆和图书馆,可防止其中的文件资料因紫外线照射而发黄变色,因此人们称这种玻璃为“文件玻璃”。
五、变色玻璃
说起变色玻璃,人们自然而然地会想到变色眼镜。这种神奇的眼镜会像魔术师那样随外界光线的强弱而变化:光线暗的地方,变色眼镜就变亮,使人能看清东西;光线亮的地方,它又会变成深色,自动保护眼睛不受强光的刺激。
这种变色玻璃的发明,是玻璃化学家从摄影化学家那里获得的启示。摄影师一按快门,就能在胶卷上留下美丽的一瞬。它靠的是什么呢?原来是可见光分解的银盐。银盐本来并不挡光,是光使它分解成为不透明的银原子,从而构成底片上的人物风景的。能不能将这一原理用于玻璃上呢?于是玻璃化学家们就试着让氯化银、溴化银、碘化银这些对光十分敏感的试剂加到熔融的玻璃液中,还加入了微量的氧化铜,这样,自动调光的“变色玻璃”就诞生了。
由于掺入玻璃中的银盐和氧化铜数量很少,而且颗粒也十分微小,平时光线可以自由穿过,与普通玻璃相差无几;处于强光照射下,银盐在光的催化下分解成银和卤素,分解的程度和光线的强弱有关,光愈强分解愈多,分解后的银聚集在玻璃上,它就变成深颜色;光线较弱时,卤素和银在氧化铜的催化下,又化合成卤化银,使玻璃变得明亮。
最近,美国洛杉矶加利福尼亚大学的研究人员研制出了一种新的变色玻璃。它一遇到某种化学物质就会改变颜色,根据这一特点,可用它作为环境监测以及医疗诊断的显示器。发明这种玻璃的科研人员首先将玻璃制成溶液,然后添加经过精选的、遇到某种化学物质就变色的酶或蛋白质。随着玻璃溶液的固化,在大蛋白质周围可产生一根像实心面条状的玻璃束。在成品玻璃上,有很多毛孔,足以使氧气、一氧化碳之类气体的微小分子进入玻璃,从而使它变色。
而日本尼康公司新近开发的一种新颖电子太阳眼镜,其镜片采用的是电感色材料,并安装有微型电池和触摸式开关。当开关打开后,由于镜片玻璃中的电荷发生变化,就可改变它的颜色。这种镜片玻璃最大的优点是其颜色的转变时间仅需四秒。在明亮的阳光下能自动变暗;汽车驾驶员戴上它进入或离开隧道时能逐渐变色;滑雪运动员从室内直接进入滑道时也是如此。
变色玻璃正从光学变色向化学变色和电子变色方向发展呢!
六、防弹玻璃
20世纪初的一天,法国化学家别涅秋克来到实验室做试验。像往常一样,他开始打扫实验室,用掸子轻轻掸去各种仪器上的灰尘。这时,只听“呯”的一声,无意中将一个长颈玻璃烧瓶碰掉到地板上。他责备自己太粗心,将用了很久的玻璃仪器损坏,太可惜了。然而,当他往地上一看却愣住了:烧瓶并没有碰碎,在瓶上布满了横七竖八、互相交错的裂纹,但没有一块碎片掉下来。
“真是个奇迹!”别涅秋克感到很奇怪。他拿起烧瓶沉思起来,想探究这到底是怎么回事儿。忽然,他想起来了,这只烧瓶曾经装过硝酸纤维素溶液,溶液挥发后留下一层薄膜,像橡皮一样紧贴在瓶壁上。但它和烧瓶碰而不碎有什么关系,别涅秋克一时还来不及研究,就顺手写了个标签,注明情况,贴在烧瓶上,然后把烧瓶放回原处,准备空暇时再仔细探讨。
几年时间很快过去了。一天,别涅秋克在报纸上看到一条消息:一辆急驰的小汽车在大雾茫茫之中撞在电线杆上,然后翻进了深沟里。车上的乘客一个被撞死,另外两个被车窗玻璃碎片划成重伤。看到此处,别涅秋克就想到,如果车窗玻璃碰而不碎那该有多好!忽然,他又想起,好像在什么地方见到过不碎的玻璃?
于是,他急忙在实验室里寻找起来。翻遍了室内各个角落,终于在一排试管架上找到了那个贴着标签的长颈玻璃烧瓶。他如获至宝,对烧瓶仔细观察,并开始专心致志地研究和试制不破碎的防弹玻璃。这种玻璃是在数片玻璃中间夹入透明的塑料膜片,然后经加热、加压和粘合而成。当它受到剧烈撞击时,由于有透明塑料膜片的粘接,玻璃被撞裂破碎后,碎片不会飞散,从而能保证人身安全。
别涅秋克发明的防弹玻璃,很快被使用在高级轿车的前后风窗上,以及飞机和宇宙飞船的舷窗上。近年来,防弹玻璃的性能得到进一步提高,成为名副其实的抗子弹射击的“防弹玻璃”。例如,原联邦德国制成的一种25毫米厚的防弹玻璃,能挡回近距离射出的手枪子弹和机枪子弹,真似铜墙铁壁一般。另外,它还可以做得更厚,增加其抗弹的能力。英国制造的防弹玻璃厚达609毫米,不仅坚固结实,而且十分透明,人们还可以透过它阅读书报呢!
七、微晶玻璃
玻璃家族中有个与众不同的成员,名叫微晶玻璃。它具有与普通玻璃不同的结构,生就一种特殊的性格。它硬度高,抗弯强度是普通玻璃的7~12倍。它耐高温性能好,软化温度高达1000℃,即使达到900℃高温,突然投入水中也不会炸裂。它的膨胀系数可以调节,甚至可使其膨胀系数为零。它不但电性能优异,还可以用来制作雕刻艺术品,在它身上打出成千上万个微孔也不是一件难事。所以,微晶玻璃在生产中有许多独特的应用。那么,微晶玻璃是怎样发明的呢?
20世纪50年代初,在世界上享有盛誉的美国康宁玻璃公司为了开发新型玻璃,抽调一批精干的科研人员,组成了研究发展中心。化学家斯托凯受命在该中心负责研制含微量银的感光玻璃。所谓感光玻璃,就是一种能感光显色的新型玻璃。这种玻璃经紫外线照射感光后,再经热处理,就能显示出美丽的影像,不但色泽鲜艳,而且永不褪色。
一天,斯托凯正在实验室做热处理试验。按工艺规程要求,热处理时加热温度为玻璃软化温度以下50℃~100℃,保温时间为1~2小时。斯托凯把一块玻璃放入自动控制温度的电炉中,将温度控制仪上的加热温度调整为600℃。这种温度控制仪的工作原理是:一旦炉温超过设定的温度,比方说600℃,它会自动切断电源,停止加热;而当温度下降到低于600℃时,又自动接通电源。这样一会儿断电一会儿通电,就把炉温保持在600℃左右。
现在,斯托凯一切准备就绪,他关上炉门,接通电源,电炉开始升温。突然,传来一阵急促的电话铃声,原来是通知他立即去开会。按照实验室规定,电炉在加热时工作人员不能离开岗位,但斯托凯想,反正有温度控制仪,就明知故犯地离开实验室去开会了。当他重返实验室时,不禁大吃一惊,控制仪失灵,炉内温度早已升到900℃,真是糟糕透顶。不仅实验失败,而且熔融玻璃会粘住炉膛,损坏电阻丝,后果十分严重。
斯托凯非常懊恼,赶紧打开炉门,意外的事情发生了:玻璃没有熔融,还是直挺挺地躺在炉内,但已面目全非,样子有点像不透明的瓷砖,用钳子夹起来不是软绵绵的,而是硬邦邦的,敲起来还会发出像金属那样的声音。
这块玻璃究竟发生了什么变化?经过仔细的研究和反复试验,斯托凯在显微镜下观察到:这块玻璃中析出了大量的微小晶体,这就是后来大名鼎鼎的微晶玻璃。
顾名思义,微晶玻璃是由微小晶体组成的玻璃。由于这种玻璃具有与陶瓷相似的结构,所以又称为“玻璃陶瓷”。
我们知道,玻璃属于非晶态的固态物质。在玻璃制造过程中,由于冷却太快,内部分子来不及排列成整齐的队伍就凝固了,所以基本上还是液态时的结构,显得杂乱无章。只不过玻璃中的分子运动起来不能像在液态中那样自由自在,只能在原地“踏步”,因此形象地说,玻璃是“被冻结的液体”。
但是,玻璃的这种结构是不稳定的,在一定条件下,玻璃还是要让分子按照一定规则排列起来,析出晶体。这正像水总是从高处流向低处,结晶是玻璃的自然趋势。
什么条件下玻璃才能析出晶体呢?空气中的水汽要以尘埃作为凝聚的核心,才能形成水滴。同样,玻璃结晶也要有适当的核心,除了玻璃的自身成分可以作为结晶核心外,金、银、铜等金属元素和氧化钛、氧化锆等氧化物也可作为结晶核心。当然,要使玻璃析出晶体,还要在成分、温度、能量等方面满足一定的条件,一般在900℃~1100℃温度范围内比较容易析出晶体。
制造微晶玻璃,就是要创造玻璃结晶的条件。首先要确定微晶玻璃的化学成分,并事先加入微量的金属元素或氧化物作为结晶核心。然后在玻璃熔炼、成型后,用紫外线照射,再进行热处理,给予一定的能量条件,使结晶核心像种子发芽一样,生长出许多微小的晶体,其直径通常不超过2微米,只有头发丝粗细的几十分之一。这种要经过紫外线照射才能制成的微晶玻璃,称为“光敏微晶玻璃”。不用紫外线照射,只通过热处理也可以制成微晶玻璃,这种微晶玻璃称为“热敏微晶玻璃”。目前已有1000多种不同成分的微晶玻璃,具有各种不同的性能,但万变不离其宗,微晶玻璃的性能都同微小晶体的存在有关。
在玻璃中加入微量的感光性贵金属银作为结晶核心,可制成透明的光敏微晶玻璃。在这种玻璃上面覆盖一张照相底片,放到紫外线下照射一定的时间,使玻璃中照到紫外线的地方形成银原子的潜象,成为以后析出微小晶体的核心。再经热处理,玻璃中照到紫外线的地方便析出微小晶体,玻璃上出现乳白色的图像;而未照到紫外线的那部分玻璃没有结晶,仍然是透明的。这种玻璃的结晶部分和未结晶部分在性能上有很大的差别,在氢氟酸中的溶解能力大不一样,前者比后者要大20多倍。将这块玻璃浸入氢氟酸,由于结晶部分容易被氢氟酸腐蚀掉,而未结晶部分岿然不动,玻璃上便形成了与底片上一样的精美雕刻图案,其水平绝不亚于专门从事雕刻的能工巧匠。
利用这种化学蚀刻技术,可以对玻璃进行刻花和精密加工。例如,在指甲那么大的玻璃上可打出上万个小网眼,网眼的直径小到连头发丝都穿不过。此外,还能打出各种形状的孔眼,如方孔眼、三角孔眼等。
由于光敏微晶玻璃具有良好的电学性能和化学加工性能,故常用来制造印刷线路的基片和镂板,为电子工业的固体电路微型化作出贡献。光敏微晶玻璃还能用来制造射流元件,为实现气动控制自动化立下汗马功劳。用光敏微晶玻璃制成的高级装饰品和艺术珍品,更受到人们的欢迎。
天文学家常用反射式望远镜观察天体,这种望远镜中有一面巨大的凹镜,用于聚集来自遥远星体的微弱光线。凹镜愈大,能够集中的光线愈多,看到宇宙的范围愈大,成像愈明亮清晰。自从1668年牛顿发明反射式望远镜以来,凹镜的直径做得愈来愈大。在20世纪40年代后期,世界上第一台大型反射式望远镜建成,它的凹镜直径为5米,净重13吨,连同其他部件,望远镜总重达530吨,安装在美国帕洛玛山天文台。这台望远镜能接收到几十亿光年远处发出的极微弱的光线,比人眼灵敏100万倍。
但这台反射式望远镜有一个缺点。其凹镜采用的是普通光学玻璃,这种玻璃膨胀系数较大,因此凹镜的准确形状和尺寸精度会受气温的影响而发生变化,从而会改变光的路线,使成像的清晰度降低。
微晶玻璃的膨胀系数很小,这是因为微晶玻璃在热处理过程中会析出具有“热缩冷胀”性质的微晶颗粒,和一般玻璃材料的“热胀冷缩”的特性正好相反。因此通过调节可以使这两种特性相互抵消,制成膨胀系数为零的微晶玻璃。用这种微晶玻璃制成的凹镜,其精确度不会受到温度影响。于是,微晶玻璃又有了一个用武之地,它是制作大型反射式望远镜凹镜的理想材料。
我国在1978年用超低膨胀系数微晶玻璃制成了凹镜直径为2.2米的反射式望远镜,安装在北京天文台,使我国进入了为数不多的能制造这类大型微晶玻璃凹镜的国家的行列。
这种超低膨胀系数的微晶玻璃还广泛用于厨房用具、热工仪表、医学和建筑材料等方面,如果制成餐具或烧锅,急冷急热都不用担心炸裂。它强度、硬度高,耐磨性好,常用来做钟表和精密仪器中的轴承,作为贵重的红宝石的代用品。
我们知道,导弹是一种命中率极高、杀伤力很大的现代化武器。为什么导弹的命中率会那么高呢?原来,导弹的头部装有一个由敏感系统、测量系统、控制系统、执行机构等电子装置组成的制导系统,它可以精确地控制和修正导弹的飞行方向。但导弹在大气中飞行,其头部因与空气摩擦而产生相当高的温度,因此在导弹的头部有一个流线型防护罩,用以保护装在其内的制导系统。防护罩要满足很高的要求,它既要能让微波信号透过,又要抗高温,以保证其内部的电子装置在导弹高速飞行时能正常工作。
微晶玻璃具有良好的成型性,容易加工成尺寸精确、材质均匀的零件。它比重小,抗弯强度高,在短时间内可经受120℃的高温考验。用它来制作防护罩,在导弹高速飞行时能辐射大量的热,从而降低工作温度。因此,微晶玻璃是一位名副其实的导弹头部的“保护神”。
八、金属玻璃
金属玻璃又称非晶态合金,它既有金属和玻璃的优点,又克服了它们各自的弊病。如玻璃易碎,没有延展性。金属玻璃延展性却高于钢,硬度超过高硬工具钢,且具有一定的韧性和刚性,所以,人们赞扬金属玻璃为“敲不碎、砸不烂”的“玻璃之王”。
金属和玻璃从宏观特性到微观结构从不“搭界”。那么,又是什么手段使金属变成“玻璃”的呢?这是把高温下熔化了的液体金属,以极快的速度急剧冷却,使金属原子来不及按它的常规编排结晶,还处于不整齐、杂乱无章的状态就被“冻结”了,因此,出现了类似玻璃的奇异特性。
制造金属玻璃的关键是保持极高的冷却速度,要在千分之一秒的时间内,把熔化的金属材料冷却为固体,这样的冷却速度等于在一秒钟内把温度突然降低100万摄氏度。由于冷却速度太快了,熔化的合金液体来不及调整为晶体结构,突然被凝固成毫无秩序的固态。几乎所有的金属都可以通过快速凝固的方式成为金属玻璃。人们最初使用的是一种金硅合金。现在常常用铁作为主要材料,因为它的价格比较便宜,而且电磁性能也比较好。1974年美国首先制成的商品材料“金属玻璃”(Metglas)和1975年日本制成的商品材料“非晶态金属”(Amomet)都是铁基合金。
金属玻璃是20世纪70年代刚刚走出实验室成为商品的一种新材料。人类在使用金属几千年漫长的岁月中,所遇到的金属是晶体的金属和合金,它们均具有排列整齐的原子结构。而在它的排列缺陷的地方会被拉断,金属玻璃的原子排列是无序的,它没有特殊的薄弱环节。因此金属玻璃的抗断裂强度比一般金属材料高得多,可达350千克/平方毫米。更可贵的是,在达到如此高强度的同时,这种材料还保持难以令人想象的韧性和塑性,所以可用来制造高压容器和火箭等关键部位的零件。
由于金属玻璃没有金属那样的晶粒边界,腐蚀剂无空子可钻,所以从根本上解决了金属晶界的腐蚀问题,能经受多种化学溶液的腐蚀,有良好的化学稳定性,它的抗腐蚀性要比不锈钢强100倍。金属玻璃还具有很好的超导性和抗核辐射能力等难得的优良性能。人造卫星上的太阳能电池是单晶硅电池,这种电池价格昂贵,如果将硅制成非晶硅(即硅金属玻璃)其价格就便宜多了,太阳能电池也就能更好地推广和普及。
现在真正能发挥非晶态合金特长的是电磁器件。非晶态铁合金是极好的软磁材料,容易磁化和退磁。与普通磁性材料相比,它具有导磁率高、损耗小、电阻率大等优点。用硅钢和金属玻璃分别制成15千伏变压器的对比试验表明:磁芯损耗分别为322瓦和180瓦。金属玻璃有效地用于放大器、开关、记忆元件等器件上。日本TOK公司用非晶态合金制成的录音机磁头,由于磁畸变极小而改善了音质。
金属玻璃是直接从熔融状态制成的,因而避免了费用高、周期长、耗能大的加工过程,它的成本仅为不锈钢制品的五分之一。含铬金属玻璃由于耐腐蚀和耐点蚀,特别是在氯化物和硫酸盐中的抗腐蚀性大大超过不锈钢,获得了“超不锈钢”的名称,可以用于海洋和医学等方面。例如制造海上军用飞机电缆、鱼雷、化学滤器、反应容器、刮胡刀及手术刀等。
金属玻璃的高强度也引起了工程技术人员的注意。由于目前生产的各种元件尺寸不大,所以要通过编织和铺砌才能制成结构元件。这些用途包括强度控制电缆、电缆和光缆护套、压力容器、储能飞机、机械传送带、轮胎帘子布等。
用金属玻璃代替纤维和碳纤维制造复合材料,会进一步提高复合材料的适应性。硼纤维和碳纤维复合材料的安装孔附近易产生裂纹,而金属玻璃在具有很高强度(232~372千克/平方毫米)的情况下,仍保持金属塑料抗变形的能力,因此有利于阻止裂纹的产生和扩展。目前正在研究将金属玻璃纤维用于飞机构架和发动机元件。
金属玻璃已引起世界各国的普遍重视,近年来已获得了长足的进展。但要获得每秒100万摄氏度的冷却速度却是十分艰难的,而且在这么快的冷却速度下所获得的金属往往是很薄的,因而在应用上受到一定的限制,这些问题尚需进一步解决。
在展望新材料发展的前景时,首先让我们回顾一下20世纪80年代材料在整个世界贸易中的景象。尽管陶瓷、复合材料、塑料的平均增长率分别高达16.1%、8.1%和7.0%,而新型钢制品和新型有色金属制品的平均年增长率分别只有2.2%和3.7%。但是,新型钢制品和新型有色金属制品的营业额总和却超过了其他所有的材料及其制品的总和,从其量大和增长率低这一客观事实可以得出两个观点:其一是由于金属材料毕竟是发展历史悠久而且系统完整的传统材料,从中发展材料的机率和比例相对较低;其二是由于基数大而增长率低这一事实并不能掩盖新兴金属材料在新材料发展中的重要地位和作用,以上是对20世纪80年代的整个世界贸易中新材料市场的分析。
21世纪世界钢产量仍处于上升的趋势,但各国的差异很大,美国已进入饱和时期,从经济和环境保护的角度出发,他们将减少本国的钢铁产量,进口部分钢铁并大力发展新材料;日本和欧盟已开始进入饱和状态;俄罗斯也已进入成熟时期,但其居高不下的钢产量已经阻碍了工程塑料等新材料的发展;中国和其他发展中国家则还处在成长期,不是什么“夕阳工业”的问题。我国继前苏联、日、美之后,居世界第四,这是仅从数量讲;更重要是在品种、规格和质量方面,总的差距还是很大的,所以在相当长的时期内,我国包括钢铁、有色金属等传统金属材料在内的金属材料工业仍将处于重要的发展阶段,而新兴金属材料则更需迎头赶上世界发展的潮流,要特别注意我国富有的稀土和硼等资源的开发和利用。
金属材料从原来几乎一统天下的地位逐渐让出部分市场并为其他新材料所取代,这是符合历史发展规律的。但是,在可以预见的未来,金属材料仍将占据材料工业的主导地位,这种情况在中国等发展中国家尤其如此。这是因为金属材料工业已拥有了一套相当成熟的生产技术和庞大的生产能力,并且质量稳定,供应方便,在性能价格上也占有一定优势。此外,在相当长时期内金属材料的资源是有保证的。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。