“勾三股四弦五”,是现在我们耳熟能详的“勾股定理”中的一个特例,它早在西汉的数学著作《周髀算经》中就已经出现。遗憾的是,我们的祖先没能从特例中发现这一定理的普遍意义,而拱手将这一定理的发现权及冠名权让给了古希腊著名的数学家和哲学家毕达哥拉斯。他第一个用演绎法证明了直角三角形斜边平方等于两直角边平方之和,因而这条定理在西方以他的名字命名,被称为“毕达哥拉斯定理”。
大约在公元前572年,毕达哥拉斯出生于爱琴海中的萨摩斯岛。自幼聪明好学,曾在名师门下学习几何学、自然学和哲学,后来因对东方的向往,游历巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明,大约在公元前530年才返回希腊,创建了自己的学派。此后他一边从事教育,一边从事数学研究。
“勾股定理”是毕达哥拉斯一个最具代表的数学成就,关于这一定理的发现还有一个有趣的故事。
相传,毕达哥拉斯应邀参加一次豪华宴会,不知道什么原因,大餐迟迟不上桌。善于观察和理解的毕达哥拉斯没有注意到这些,而是被脚下排列规则、美丽的方形石砖所深深吸引。他并不是欣赏它们的美丽,而是思考它们和“数”之间的关系。于是,在大庭广众之下,他蹲在地板上,拿了画笔在选定的一块石砖上以它的对角线为边画一个正方形,结果惊奇地发现这个正方形面积恰好等于两块砖的面积和。开始他以为这只是巧合,但当他把两块石砖拼成的矩形之对角线作另一个正方形时,这个正方形之面积相当于5块石砖的面积。这也就是说它等于以两股为边作正方形面积之和。
毕达哥拉斯被这一惊奇的发现惊呆了,他明白这绝不是一种巧合。回到家后,他又作了进一步演算,最终证明了“勾股定理”。据说,他为了庆祝这一伟大的发现,特宰杀了一百头牛,在学院里大摆宴席狂欢。
对数的研究,毕达哥拉斯达到了痴迷的程度,且把它神秘化。他认为数是众神之母,是普遍的源头,并把它上升到了美学高度,让人们站在审美的角度来理解“数”,理解“和谐”和“美”。
除将“数的和谐”用在美学上外,毕达格拉斯还将这种思想引向了音乐。他发现:竖琴每一条弦的长度如果呈一定的比例,这些琴弦发出的声音就会很清晰。琴弦的长度可以用数字表示(这也就是我们所知的五线谱的最早来历了),所以毕达哥拉斯认为,美丽的音色背后存在着“数字”,因此他为音乐创造出了数学性的规则,故而也被称为“音乐鼻祖”。
球形是最完美的几何体,毕达哥拉斯认为大地也应该是球形。在此基础上,他提出了太阳、月亮和行星作均匀圆周运动的观点,这一观点直到17世纪初德国天文学家开普勒的出现才被打破。此外,他还认为10是最完美的数,推断天上发光运动天体也必然是10个。
毕达哥拉斯的哲学是和数学分不开的,他把自己在数学上的思想引到了哲学上,总结出一句话就是“万物皆数”,“数是万物的本质”。在对宇宙本源的认识上,他把数理解为是自然界的形式和形象,是一切事物的总根源。有了数,才有几何学上的点,有了点才有线、面和市体,有了立体才有火、气、水、土这四种元素,从而构成了世间万物。这些观点虽然带有很强的主观色彩,但是对后来美学的发展却起着深远的影响。
在历史上,关于毕达哥拉斯的传说几乎是一堆难分难解的真理与荒诞的混合,罗素甚至形容他为:“一种爱因斯坦与艾地夫人的混合。”此外,他所建立的有宗教色彩的毕达哥拉斯学派,持续繁荣了两个世纪之久。他的思想主要是通过这一学派得以继承和传播。
大约公元前497年,毕达哥拉斯在林敦(今意大利南部塔兰托)去世,但他在科学上所作出的贡献是永远不可磨灭的,他把对数学的理解发展到哲学上的意义,一直影响到今天,特别是“数的和谐”思想至今仍是现在美学的最高追求。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。