首页 理论教育 耐药基因治疗

耐药基因治疗

时间:2023-04-22 理论教育 版权反馈
【摘要】:大多数肿瘤的耐药与多药耐药基因mdrl有关,其蛋白产物为P-gP,是一种胞膜糖蛋白,赋予mdrl阳性肿瘤细胞多药耐药的特性。此外细胞凋亡等其他的耐药机制也可能参与了肿瘤细胞的耐药过程。目前基因治疗应用于胆管癌尚处于基础和动物实验阶段,还存在着目的基因靶向性差、转导效率低,以及体内表达尚缺乏有效的调控手段等问题。因此,基因治疗联合放、化疗的研究将成为胆管癌基因治疗探讨的另一重要方向。

大多数肿瘤的耐药与多药耐药基因mdrl有关,其蛋白产物为P-gP,是一种胞膜糖蛋白,赋予mdrl阳性肿瘤细胞多药耐药的特性。陈汝福等用逆转录聚合酶链反应(RT-PCR)方法检测多药耐药基因MDR1在肝门胆管癌组织中的表达,在蛋白水平上显示P-gP表达在肝外胆管癌组织中明显高于正常组织。此外细胞凋亡等其他的耐药机制也可能参与了肿瘤细胞的耐药过程。多项研究证实,Bcl-2家族中抑制凋亡的基因如Bcl-XL、Mcl-1等基因在体内和体外实验中均能够有效地降低抗癌药物诱导肿瘤细胞的凋亡作用。近年来一些研究发现胆管细胞癌具有较高的Bcl-2家族基因表达阳性率。

耐药基因治疗利用反义寡核苷酸技术可抑制异常活化的多药耐受基因,由于单链寡核苷酸易被核酶降解,所以近年来人们展开对反义寡核苷酸链进行多种耐核酶化学修饰的研究,同时加用化疗药物治疗胆管癌,探讨通过降低凋亡抑制基因表达以增强胆管癌对化疗药物敏感性,并获得良好效果;另一种方法是将多药耐受基因导入造血干细胞,获表达后可使骨髓细胞产生对化疗药物的抗药性,抵御化疗药物的损害,从而达到增加化疗药物剂量,进而提高化疗疗效。

胆管癌的发生是一个极其复杂的过程,是多基因协同作用、多因素共同参与、多阶段综合发展的结果,因此联合基因治疗以及建立治疗的个体化方案符合其发生发展的规律,是基因治疗发展的必然结果和趋势。目前基因治疗应用于胆管癌尚处于基础和动物实验阶段,还存在着目的基因靶向性差、转导效率低,以及体内表达尚缺乏有效的调控手段等问题。因此,基因治疗联合放、化疗的研究将成为胆管癌基因治疗探讨的另一重要方向。相信随着现代分子生物学的不断发展,在不远的将来一定会取得更大的突破。

(谢德荣 李志花)

参考文献

[1]G.Arroyo,J.Gallardo,B.Rubio,et al.Proceedings of ASCO,2001,(20):157-626.

[2]D.Cdovaal,J.S.Sekhon,J.Fuloria,et al,Proceedings of ASCO,2001,(20):156-622.

[3]Sugita H,Hirota M,Ichihara A,et al.Combined chemotherapy of irinotecan and low-dose cisplatin(I/low-P)against metastatic biliary tract cancer.J Hepatobiliary Pancreat Surg,2006,13:463-467.

[4]Mazhar D,Stebbing J,Bower M.Chemotherapy for advanced cholangiocarcinoma:what is standard treatment?Future Oncol,2006,2:509-514.

[5]黄洁夫.肝脏胆道肿瘤外科学.北京:人民卫生出版社,1999:574-582.

[6] 秦叔逵,王健民,王杰军.中国临床肿瘤学教育专辑.北京:中国医药科技出版社,2001:150-155.

[7]Yamashita Y,Taketomi A,Fukuzawa K,et al.Gemcitabine combined with 5-fluorouracil and cisplatin (GFP)in patients with advanced biliary tree cancers:apilot study.Anticancer Res,2006,26:771-775.

[8]Kobayashi K,Tsuji A,Morita S,et al.A phase II study of LFP therapy[5-FU(5-fluorourasil)continuous infusion(CVI)and Low-dose consecutive(Cisplatin)CDDP]in advanced biliary tract carcinoma.BMC Cancer,2006,6:121.

[9]Lin LL,Picus J,Drebin JA,et al.A phase II study of alternating cycles of split course radiation therapy and gemcitabine chemotherapy for inoperable pancreatic or biliary tract carcinoma.Am J Clin Oncol,2005,28:234-241.

[10]Eng C,Ramanathan RK,Wong MK,et al.A Phase II trial of fixed dose rate gemcitabine in patients with advanced biliary tree carcinoma.Am J Clin Oncol,2004,27:565-569.

[11]Berr F.Photodynamic therapy for cholangiocarcinoma.Semin Liver Dis,2004,24:177-187.

[12]Ortner MA.Photodynamic therapy in cholangiocarcinomas.Best Pract Res Clin Gastroenterol,2004,18:147-154.

[13]Ortner ME,Caca K,Berr F,et al.Successful photodynamic therapy for nonresectable cholangiocarcinoma:a randomized prospective study.Gastroenterology,2003,125:1355-1363.

[14]Heron DE,Stein DE,Eschelman DJ,et al.Cholangiocarcinoma:the impact of tumor location and treatment strategy on outcome.Am J Clin Oncol,2003,26:422-428.

[15]Kuhn R,Hribaschek A,Eichelmann K,et al.Outpatient therapy With gemcitabine and docetaxel for gallbladder,biliary,and cholangio-carcinomas[J].Investnew Drugs,2002,20(3):351-356.

[16]Andre T,Tournigand C,Rosmorduc O,et al.Gemcitabine combined with oxaliplatin(GEMOX)in advanced biliary tract adenocarcinoma:a GERCOR study[J].Ann Oncol,2004,15(9):1339-1343.

[17]Bjarngard BE,Kijewski PK,Pashby C.Description of a computer controlled machine.Int J Radiat Oncol Biol Phys,1977,2:142.

[18]Kijewski PK,Chin LM,Bjarngard BE.Wedge-shaped dose distributions by computer-controlled collimator motion.Med Phys,1978,5:426-429.

[19]Chin LM,Kijewski PK,Svensson GK et al.Dose optimization with computer controlled gantry rotation,collimator motion and dose-rate variation.Int J Radiat Oncol Biol Phys,1983,9:723-729.

[20]Djordjevich A,Bonham J,Hussein EMA,Andrew JW,Hale ME.Optimal design of radiation compensators.Med Phys,1990,17:379-404.

[21]Mageras GS,Mohan R,Burman C,Barest GD,Kutcher GJ.Compensators for three-dimensional treatment planning.Med Phys,1991,18:133-140.

[22]Carol MP.Peacock:a system for planning and rotational delivery of intensity-modulated fields.Int J Imaging Syst Technol,1995,6:56-61.

[23]Mackie TR,Holmes TW,Reckwerdt PJ,Yang J.Tomotherapy:optimized planning and delivery of radiation therapy.Int J Imaging Syst Technol,1995,6:43-55.

[24]Bortfeld TR,Kahler DL,Waldron TJ,Boyer AL.X-ray field compensation with multileaf collimators. Int J Radiat Oncol Biol Phys,1994,28:723-730.

[25]Boyer AL.Use of MLC for intensity modulation.Med Phys,1994,21:1007.

[26]Bortfeld TR.Dynamic and quasi-dynamic multileaf collimation.Radiother Oncol,1995,37:Suppl.1:S16.

[27]Convery DJ,Rosenbloom ME.The generation of intensity modulated fields for conformal radiotherapy by dynamic collimation.Phys Med Biol,1992,37:1359-1374.

[28]Svensson R,Kallman P,Brahme A.Analytical solution for the dynamic control of multileaf collimators.Phys Med Biol,1994,39:37-61.

[29]Stein J,Borrtfeld T,Dorschel B,Schlegel W.Dynamic x-ray compensation for conformal radiotherapy by means of multileaf collimation.Radiother Oncol,1994,32:163-173.

[30]Spirou SV,Chui CS.Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators.Med Phys,1994,21:1031-1041.

[31]Yu CX,Symons MJ,Du MN,Wong JW.Photon intensity modulation by dynamic motion of multileaf collimator.Med Phys,1994,21:1008.

[32]Yu CX,Symons MJ,Du MN,Martinez AA,Wong JW.A methods for implementing dynamic photon beam intensity modulation using independent jaws and a multileaf collimator.Phys Med Biol,1995,40:769-787.

[33]Yu CX.Intensity modulated arc therapy with dynamic multileaf collimation:an alternative to tomotherapy.Phys Med Biol,1995,40:1435-1449.

[34]Yu CX,Jaffray D,Wong JW,Martinez AA.Intensity modulated arc therapy:dosimetric verification with clinical examples.Int J Radiat Oncol Biol Phys,1995,32Suppl.1:186.

[35]Lind B,Brahme A.Development of treatment techniques for radiotherapy optimisation.Int J Imaging Syst Technol,1995,6:33-42.

[36]Carol MP.Where we go from here:one person′s vision Chapter7,In Sternick ES(ed).The theory &practice of intensity modulated radiation therapy.Advanced medical publishing,1997:pp243-254.

[37]Brahme A.Optimization of radiation therapy and the development of multileaf collimation.Int J Radiat Oncol Biol Phys,1994,28:785-787.

[38]Brahme A.The optimal number of beam portals in radiation therapy.Radiother Oncol 37:Suppl.1S3.

[39]周俭,吴志全,樊嘉,等.胆管细胞癌临床特点及其与肝细胞癌的比较.中华普通外科杂志,2000,15 (6):330-332.

[40]Roayaie S,Guarrera JV,Ye MQ,et al.Aggressive surgical treatment of intrahepatic cholangiocarcinoma:predictors of outcomes.J Am Coll Surg,1998,187(2):365-372.

[41]Chu KM,Lai ECS,Hadeedi SA,et al.Intrahepatic cholangiocarcinoma.World J Surg.1997,21(2):301-306.

[42]Sasaki A,Aramaki M,Kawano K,et al.Intrahepatic peripheral cholangiocarcinoma:mode of spread and choice of surgical treatment.Br J Surg,1998,85(5):1206-1209.

[43]于金明,于甬华,陈延条,等.肝癌和肝转移癌的立体定向放射治疗,中国癌症杂志,1999,9(5-6):514.

[44]于金明,谢印法,于甬华,等.立体定向放射治疗结合介入治疗腹膜后转移癌.中华放射肿瘤学杂志,2001,10(1):54-55.

[45]Tan CK,Podila PV,Taylor JE,et al.Human cholangiocarcinomas express somatostatin receptors and respond to somatostatin with growth in hibition.Gastroenterology,1995,108:1908.

[46]Sanz-Altamira PM,Ferrante K,Jenkins RL,et al.A phase II trial of 5-fluorouracil,leucovorin,and carboplatin in patients with unresectable biliary tree carcinoma.Cancer,1998,82(12):2321.

[47]黄志强.黄志强胆道外科.济南:山东科学技术出版社,1999:787-829.

[48]叶维法,杨秉辉,万德森,等.肝胆肿瘤学.天津:天津科学技术出版社,2000:506-508.

[49]陈汝福,邹声泉.肝门部胆管癌组织内血管形成与细胞凋亡相关性的研究.中华肝胆外科杂志,1999,5 (6):373.

[50]陈汝福,邹声泉,李志花,等.多药耐药基因mdr-1在肝门部胆管癌组织中的表达及意义.癌症,2000,19(4):350.

[51]杨竹林,李永国,钟德许,等.胆系恶性肿瘤VEGF、bFGF的表达与微血管计数的关系.中华普通外科杂志,2000,15(9):558.

[52]Leelawat K,Leelawat S,Tepaksorn P,et al.Involvement of c-Met/hepatocyte growth factor pathway in cholangiocarcinoma cell invasion and its therapeutic inhibition with small interfering RNA specific for c-Met.J Surg Res,2006,136:78-84.

[53]Lie-A-Ling M,Bakker CT,Deurholt T,et al.Selection of tumour specific promoters for adenoviral gene therapy of cholangiocarcinoma.J Hepatol,2006,44:126-133.

[54]陈汝福,邹声泉,钱家勤.细胞凋亡与细胞增生在胆囊肿瘤形成中的作用.胃肠病学和肝病学杂志,2000,9:31-33.

[55]Sasaki T,Katayose Y,Suzuki M,et al.Adenovirus expressing mutant p27kip1enhanced apoptosis against cholangiocarcinoma than adenovirus-p27kip1wild type.Hepatogastroenterology,2004,51:68-75.

[56]Yamamoto K,Katayose Y,Suzuki M,et al.Adenovirus expressing p27KIP1induces apoptosis against cholangiocarcinoma cells by triggering Fas ligand on the cell surface.Hepatogastroenterology,2003,50:1847-1853.

[57]Hui AM,Li X,Shi YZ,Takayama T,Torzilli G,Makuuchi M.Cyclin D1overexpression is a critical event in gallbladder carcinogenesis and independently predicts decreased surrival for patients with gallbladder carcinoma.Clin Cancer Res,2000,6:4272-4275.

[58]陈汝福,邹声泉,钱家勤.P16蛋白在胆囊癌中的表达及与预后的关系.中华肝胆外科杂志,1999,5:253.

[59]Tanaka S,Iwai M,Harada Y,et al.Targeted killing of carcinoembryonic antigen(CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter.Cancer Gene Ther,2000,7:1241-1250.

[60]逄锦忠,童赛雄.原发性胆囊癌分子生物学研究进展.世界华人消化杂志,2002,10(4):441-444.

[61]Pederson LC,Vickers SM,Buchsbaum DJ,et al.Combined cytosine deaminase expression,5-fluorocytosine exposure and radiotherapy increases cytotoxicity to cholangiocarcinoma cells[J].J Gastrointest Surg,1998,2(3):283-291.

[62]Rogulski KR,Zhang K,Kolozsvary A,et al.Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy[J].Clin Cancer Res,1997,3(11):2081-2088.

[63]Soler MN,Milhaud G,Lekmine F,et al.Treatment of medullary thyroid carcinoma by combined expression of suicide and interleukin-2genes[J].Cancer Immunol Immunother,1999,48(223):91-99.

[64]Kianmanesh AR,Perrin H,Panis Y,et al.A"distant"bystander effect of suicide genetherapy:regression of nontransduced tumors together with a distant transduced tumor[J].Hum Gene Ther,1997,8 (15):1807-1814.

[65]Mcmasters RA,Saylors RL,Jones KE,et al.Lack of bystander Killing in herpes simplex virus thymidine kinase-transduced colon cell Lines due to deficient connexin43gap junction formation[J].Hum Gene Ther,1998,9(15):2253-2261.

[66]Craig C,Kim M,Ohri E,et al.Effects of adenovirus-mediated p16INK4Aexpression on cell cycle arrest are determined by endogenous p16and Rb status in human cancer cells[J].Oncogene,1998,16(2):265-272.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈