首页 理论教育 细胞来源的微泡与肿瘤转移

细胞来源的微泡与肿瘤转移

时间:2023-04-24 理论教育 版权反馈
【摘要】:在未来,膜囊泡靶标有望成为减少进展期恶性肿瘤发病率和死亡率的有效方法。鉴于以上发现以及大多数肿瘤细胞中膜囊泡去除率显著增加的现象,微泡参与癌变和转移过程就并不奇怪了。以上发现表明,微泡在肿瘤微环境和转移位点形成利于肿瘤细胞生长微环境中发挥着积极的作用。而像EMMPRIN等一些糖蛋白也被认为是通过肿瘤细胞表面蜕落的微泡释放的。肿瘤细胞蜕落产生的微泡也有类似于血小板衍生微粒的促凝血作用,进一步促进转移进展。

◎Hector Peinado,Bethan Psaila,David Lyden

细胞膜来源的囊泡(简称“膜囊泡”)是各种类型的细胞在其正常运作期间脱落产生的球形膜碎片。过去这些“细胞垃圾”被误认为是微不足道的碎片而被忽略。然而,现在发现这些膜囊泡在凝血、免疫调节、细胞间的交流和分子传递等许多生理过程中都发挥着作用[1,2]。此外,病理过程中膜囊泡的作用也得到越来越多的关注,特别是在促进肿瘤的发生和恶性进展的过程中作为细胞与细胞间的通信系统。本章概述了肿瘤细胞来源的膜囊泡与宿主细胞来源的膜囊泡之间复杂的相互作用。虽然膜囊泡生物学功能的分子途径还未阐明,但针对膜囊泡的癌症治疗手段已经进入临床试验。在未来,膜囊泡靶标有望成为减少进展期恶性肿瘤(尤其是肿瘤转移)发病率和死亡率的有效方法。

5.4.1 引言

根据大小和释放机制,膜囊泡可大致分为两种类型:微泡(microvesicles),是一种由细胞内涵体通过膜泡方式释放的小异质膜颗粒,其大小为100nm~1μm。相比之下体积更小的exosomes(30~100nm)则被认为是来源于内吞作用过程中产生的多泡体[3,4]。虽然最早发现的膜囊泡是来源于B细胞、T细胞、血小板、树突状细胞、肥大细胞和网织红细胞等造血起源细胞[5],但最近有证据表明非造血细胞,如神经细胞、上皮细胞、肿瘤细胞等也可以分泌微泡[6-9]。因此,膜囊泡可能会根据其来源细胞类型作进一步分类。例如,血小板来源的微泡称为微粒(microparticles),而多形核粒细胞来源的微泡被称为ectosomes。尽管微泡和exosomes在功能上的异同需要进一步研究,但这两类膜囊泡很可能有许多共同的生物学功能[10,11]

微泡因为其十分微小,可能会被误认为是无关紧要的细胞碎片。然而,越来越多的证据表明,不论是在局部还是整体,微泡在细胞生理和病理过程中的细胞调控和细胞与细胞之间通讯中发挥着积极的作用[2,12]。例如,在果蝇形态发育过程中,形态发生富集的微泡(称为argosomes)通过建立远距离蛋白形态梯度,在组织重组中发挥重要作用[13,14]。此外,已证明膜囊泡可通过配体-受体相互作用直接激活细胞,介导膜受体的转运以及不同细胞类型间m RNA、蛋白质和脂质的穿梭往来(图5-12)[3,15-17]。在这方面,微泡组成了一个全新的细胞间水平交叉调节系统,并成为细胞间交流的信使。

鉴于以上发现以及大多数肿瘤细胞中膜囊泡去除率显著增加的现象,微泡参与癌变和转移过程就并不奇怪了。在癌变过程中,肿瘤细胞直接通过细胞与细胞间通讯,或间接通过分泌因子与微环境发生相互作用。自从对膜囊泡的研究出现至今,肿瘤细胞来源与宿主细胞来源的膜囊泡已经被认为在促进肿瘤的生长和恶性转化中发挥着重要作用。同时,肿瘤微环境也可调节膜囊泡的产生与功能[18]

5.4.2 肿瘤细胞来源的微泡

肿瘤细胞分泌的微泡出现在转移级联反应的各个阶段,如肿瘤细胞的侵袭和基质降解[19,20]、血管生成[21-23]、免疫逃避[12,24-31]和在继发部位的定位等过程。值得注意的是,肿瘤细胞脱落产生的微泡与药物流逝机制相关,可解释某些抗药性的机制[32]

图5-12 微泡作为细胞间信息传递系统的机制

注: (A)通过受体-配体相互作用的细胞直接激活;(B)表面受体从一种细胞类型向另一种细胞类型的传递;(C)蛋白、m RNA或其他有生物活性的分子从一个细胞向另一个细胞的传递;(D)靶细胞遗传学或表观遗传学重编程。

对肿瘤细胞分泌的微泡和exosomes进行蛋白质组分析显示,有许多蛋白质参与迁移、侵袭、繁殖、血管生成、宿主间质细胞趋化性及免疫逃避等过程[2,6,12,33-35]。以上发现提示我们,蛋白经过组装进入微泡是一个高度有序并受控的过程,因此微泡内特别富含癌变和转移的促进因子。然而,膜囊泡形成机制中的许多细节仍然未知。

除了膜囊泡的内容物之外,膜囊泡膜本身似乎也具有生物活性,并且肿瘤细胞蜕落产生膜囊泡的过程被认为受到空间调控。膜囊泡更有可能来源于细胞膜某些特定区域,富含存在于肿瘤细胞的某些细胞表面分子和蛋白酶,包括CD44、CD63、CD147和CD95L,都与肿瘤恶性行为相关[7,19,37,38]。尤其是CD147,它作为一种已知的胞外基质金属酶(MMP)的诱导因子,可与宿主基质成纤维细胞相互作用,刺激它们产生MMP-1、MMP-2和MMP-3[39],并增强内皮细胞的血管形成能力[31]。更重要的是,最新发现微泡可介导蛋白酶传递和原发瘤甚至远处转移瘤内活动。例如,已发现膜囊泡释放的金属蛋白酶ADAM10在分子L1的剪切、分泌和结合中发挥着积极的作用,从而促进肿瘤细胞的迁移[40]。类似的,四分子交联膜蛋白CO-029/D6.1A可通过exosomes的运送在远处转移器官的血管再生中扮演重要角色。这种蛋白在肿瘤exosomes中被运送到达远端器官,在那里,对血管生成互相协作,促进MMP和u PA的分泌,以及成纤维细胞和血管内皮细胞表达VEGF[41]。以上发现表明,微泡在肿瘤微环境和转移位点形成利于肿瘤细胞生长微环境中发挥着积极的作用。

而像EMMPRIN等一些糖蛋白也被认为是通过肿瘤细胞表面蜕落的微泡释放的。在这个过程中,小泡迅速裂解,释放有生物活性的EMMPRIN和刺激成纤维细胞表达MMP,促进肿瘤侵袭和转移[42]。事实上,最近的报道表明胶质母细胞瘤来源的微泡含有一个特异标记,即肿瘤特异性蛋白EGFRv III,可从胶质母细胞瘤患者血清的微泡以及人脑胶质瘤或胶质瘤来源的细胞系中检测到,提示它可能是一种新的具有潜在应用价值的诊断标记[43,44]

除了膜蛋白,膜的非蛋白元件也被显示出在肿瘤发生及转移进展中的作用。值得注意的是,微泡的膜是由大量鞘磷脂组成,因为在高转移性癌细胞表面比其母细胞的浆膜表面含有更加丰富的主要膜磷脂[45]。在对人纤维肉瘤和前列腺癌细胞株研究中,微泡鞘磷脂被确定为微泡诱导血管生成的主要因素,因为它可刺激内皮细胞迁移和入侵并在基质中形成毛细血管样结构,以及在鸡胚绒毛尿囊膜实验中促进体内血管生成[21]

肿瘤细胞蜕落产生的微泡也有类似于血小板衍生微粒的促凝血作用,进一步促进转移进展。尤其是肿瘤释放的含有组织因子(TF)的微泡被认为可促进恶性肿瘤患者全身高凝状态的形成,后者是恶性肿瘤的常见特征[46]。此外,含TF的微泡可以促进肿瘤的发生,患者在肿瘤局部微环境中为肿瘤细胞的增殖和肿瘤干细胞的扩展创造了壁龛。TF可导致纤维蛋白沉积,反过来促进血管生成;而CD133+肿瘤干细胞被认为可表达高水平TF,促进微环境中纤维蛋白的沉积和生长因子的富集,其中部分是通过提高成纤维细胞生长因子-2(FGF-2)的表达实现的[46,47]

除了自我促进肿瘤的生长和生存外,肿瘤源性膜囊泡在肿瘤逃避免疫攻击中也发挥着作用,从而促进转移细胞的全身播散以及远处转移靶点上继发性肿瘤的定植[12,24,27,33]。已证明包括黑色素瘤、大肠癌、卵巢癌等多种人类肿瘤细胞可产生微泡,通过表达Fas L和其他凋亡分子,诱导活化型肿瘤特异性T细胞的凋亡[26,30]。此外,肿瘤源性微泡可阻碍CD14+单核细胞向树突状细胞(DC)的分化,从而干扰抗原呈递和T细胞成熟[31]。最后,肿瘤释放的微泡也促进产生一种髓样细胞的亚型,后者通过释放TGF-FL抑制T细胞的功能[27,31]

5.4.3 转移过程中宿主细胞来源的微粒

(1) 血小板来源的微粒

目前,血小板来源的微粒是研究最为广泛的微泡。最初认为它们是促凝血颗粒,目前已知在炎症、免疫调节、造血干细胞植入和血管生成中也发挥作用,并通过多种不同机制促进肿瘤转移[5,48,49]。以一定浓度的血小板来源的微粒孵育人类乳腺癌细胞,可通过诱导血小板膜表面整合素CD41向乳腺癌细胞表面转运及增强与内皮细胞的黏附,而增强其侵袭能力[48]。肿瘤细胞CXCR4的表达也上调,提高对基质细胞衍生因子SDF1梯度的趋化。血小板微粒可改变肺癌细胞的细胞内信号,这种作用是通过上调STAT激酶途径和增强VEGF、IL-8和肝细胞生长因子(HGF)等促血管形成因子的表达而实现的。在血小板衍生微粒存在的情况下,间质成纤维细胞和肺癌或乳腺癌细胞分泌基质金属蛋白酶也增加,从而加速肿瘤生长、侵袭和细胞外基质蛋白的水解[48,49]

有趣的是,微粒对恶性肿瘤患者的诊断及预后价值也受到关注。在胃癌和肺癌患者中,血小板或单核细胞微泡数量与远处转移密切相关。当然仍需要进一步研究来确认其因果关系[22,50]

已经明确骨髓源性造血细胞和内皮细胞在原发肿瘤血管生成中的重要作用[51-53]。骨髓来源细胞在调控转移启动[51](启动转移前壁龛[52])及微转移到转移的关键性转变中都发挥了作用[53]。迄今,骨髓来源细胞特异性地募集到达肿瘤血管生成和转移部位的可能机制仍仅限于可溶性因子和趋化因子的描述,在这个过程中微泡的潜在作用尚未明确。但是,膜囊泡在原发肿瘤和宿主细胞相互作用过程极有可能扮演重要角色,它可能引导了这两种类型细胞向转移性壁龛的归巢。

已有报道表明,血小板可以将其自身的表面抗原通过微粒的释放转移到造血干(祖)细胞的表面,从而促进这些细胞植入骨髓[16]。类似的,像CXCR4这类受体从血小板微粒转移到骨髓衍生细胞,就可能促进它们走向SDF1梯度,这可引导骨髓来源细胞和肿瘤细胞在骨髓以及周围的归巢趋化。基于对造血祖细胞和其他类型细胞间的横向物质转运的证据[15-17],我们可以合理地推断肿瘤细胞和造血干细胞衍生的微泡可潜在调节转移性壁龛的形成。图5-13是该过程的假设模型。这个模型说明了肿瘤和造血干细胞衍生的膜囊泡之间对促进肿瘤的进展和转移的潜在病理合作关系。微泡对转移所起作用的深入详细分析可能揭示转移性壁龛形成的新的分子机制。

图5-13 肿瘤细胞、宿主细胞和骨髓来源细胞之间相互作用的推荐模型

注: 除了现实理论之外,肿瘤细胞和造血细胞来源微泡可能调节转移微环境的形成。(1)原发瘤分泌的微泡可能促进造血细胞向原发瘤细胞的靠拢; (2)在原发瘤中,血小板分泌的微粒可促进肿瘤微环境的形成,辅助恶性肿瘤细胞的活动; (3)造血干细胞来源的微泡可诱导肿瘤细胞到达骨及转移靶点中的特定微环境; (4)继发瘤将在该处生长。

(2) 宿主免疫细胞来源的膜囊泡

微泡和exosomes由于其来源不同,在恶性进程中可介导正相和负相的免疫调节功能[27]。一般来说,肿瘤来源的膜囊泡促进免疫抑制,而DC或T细胞来源的宿主微泡/exsomes则起到免疫刺激作用,并可能促进抗肿瘤免疫[54]。DC释放大量exsomes,被称为dexosomes。dexosomes含有丰富的MHC-II类分子、MHC-I类共刺激分子(CD80,CD86)和四次跨膜蛋白(tetraspanins)[55]。一般而言,dexosomes功能是将MHC分子所承载的抗原从成熟DC转移到幼稚DC,可导致细胞免疫反应的放大[56]。然而,exsomes诱导抗原特异性免疫反应的机制尚不清楚。

已发现dexosomes还可触发强有力的T细胞依赖反应[57,58]。从表面上看,成熟的骨髓来源DC比未成熟DC能更有效地激活T细胞[59,60]。dexosomes诱导的NF-κB激活可能是增加T细胞生存和活化的主要途径之一[61]。然而,这种反应的分子机制仍在调查。有趣的是,对细胞间黏附分子(ICAM)基因敲除小鼠的功能分析表明,MHC-II类和ICAM-1分子是幼稚T细胞的dexosome启动所必需的。在这项研究中,作者提出了一个假设模型,成熟DC分泌dexosomes到淋巴结,作为MHC和黏附分子微域,一旦与其他抗原呈递细胞(APC)结合,即可以诱导T细胞的活化[62]

由于DC微泡具有免疫刺激属性,已经尝试从已被特异性肿瘤相关抗原刺激培养的成熟DC中分离dexosomes[63]。Zitvogel等进行的先驱实验首次证明,接种dexosomes通过T细胞的免疫原性反应可消灭动物模型中的肿瘤[64]。这些研究表明,dexosomes确实是一种有积极的免疫调节能力和强有力抗肿瘤作用的胆膜囊泡。这也提示联合应用dexosome和免疫抑制剂如环磷酰胺等可能是某些癌症的有效免疫治疗方法[65]。迄今,在多项非小细胞肺癌(NSCLC)、腺癌、前列腺癌和黑色素瘤患者的I期临床试验中,利用dexosomes呈递抗原能力进行治疗的可能性已经被证实[66-70]。这些早期的临床前和临床数据表明,载有肿瘤抗原衍生肽的dexosomes可用于治疗某些肿瘤。有人曾提出,相比肿瘤细胞来源的exosomes,dexosomes将是一种更有效的抗肿瘤免疫疫苗[71]。然而,肿瘤患者来源的exosomes被认为是抗原的天然来源,因为它们含有与肿瘤细胞相同的未经修饰的抗原,因此肿瘤微泡或exosomes可作为抗肿瘤免疫材料而成为抗肿瘤药物[72]

5.4.4 膜囊泡可能用于未来抗转移治疗

过去10年积累的大量数据表明,膜囊泡在肿瘤发生及转移进展中发挥重要作用。微泡生物学和功能学已成为高度复杂的领域,还有许多关于其释放机制及内容物和表面成分的调节机制仍然未知。迄今的研究表明,以膜囊泡为基础的治疗手段可能对恶性肿瘤行之有效。

例如,根据肿瘤来源的微泡数量和(或)组成分析,可以作为一个新的肿瘤分期诊断/预后的指标。这个假设已经在卵巢癌中得到验证,相关研究表明微泡数量与肿瘤侵袭性和转移表型有关[73,74]。此外,临床前期研究表明宿主DC和肿瘤细胞来源的exosomes可作为无细胞疫苗,诱导较强的抗肿瘤免疫力,目前正进行肿瘤免疫治疗的临床研究[64,75],例如联合应用来自癌性腹水的exosomes和结合粒细胞巨噬细胞集落刺激因子(GM-CSF)治疗结直肠癌患者的I期临床试验已完成[76]。这项研究成功诱导了抗癌胚抗原(CEA)的特异抗肿瘤免疫[76]。另外,体外去除肿瘤源性免疫抑制的exosomes被认为可能是一种抗肿瘤免疫抑制的有效方法[77]。然而,专门针对肿瘤转移阶段的治疗方法仍然缺乏。抗肿瘤转移迫切需要新的治疗策略,而靶向微泡通信系统可能正是抗肿瘤转移的新颖而有效的手段。

(盛媛媛译,钦伦秀审校)

参考文献

[1]Pilzer D, et al. Emission of membrane vesicles: roles incomplement resistance,immunity and cancer. Springer SeminImmunopathol,2005,27: 375-387.

[2]Ratajczak J,et al. Membrane-derived microvesicles: important andunderappreciated mediators of cell-to-cell communication.Leukemia,2006,20: 1487-1495.

[3]Lakkaraju A,et al. Itinerant exosomes: emerging roles in cell andtissue polarity. Trends Cell Biol,2008,18: 199-209.

[4]van Niel G,et al. Exosomes: a common pathway for a specializedfunction. J Biochem,2006,140: 13-21.

[5]Simak J,et al. Cell membrane microparticles in blood and bloodproducts: potentially pathogenic agents and diagnostic markers.Transfus Med Rev,2006,20: 1-26.

[6]Poste G,et al. Arrest and metastasis of blood-borne tumor cells aremodified by fusion of plasma membrane vesicles from highlymetastatic cells. Proc Natl Acad Sci USA,1980,77: 399-403.

[7]Dolo V,et al. Membrane vesicles shed into the extracellularmedium by human breast carcinoma cells carry tumor-associatedsurface antigens. Clin Exp Metastasis,1995,13: 277-286.

[8]Faure J,et al. Exosomes are released by cultured corticalneurones. Mol Cell Neurosci,2006,31: 642-648.

[9]van Niel G,et al. Intestinal epithelial cells secrete exosome-likevesicles. Gastroenterology,2001,121: 337-349.

[10]Thery C,et al. Exosomes: composition,biogenesis and function.Nat Rev Immunol,2002,2: 569-579.

[11]Fevrier B,et al. Exosomes: endosomal-derived vesicles shippingextracellular messages. Curr Opin Cell Biol,2004,16: 415-421.

[12]Iero M,et al. Tumor-released exosomes and their implications incancer immunity. Cell Death Differ,2008,15: 80-88.

[13]Greco V,et al. Argosomes: a potential vehicle for the spread ofmorphogens through epithelia. Cell,2001,106: 633-645.

[14]Eaton S. Release and trafficking of lipid-linked morphogens. CurrOpin Genet Dev,2006,16: 17-22.

[15]Baj-Krzyworzeka M,et al. Tumor-derived microvesicles carry several surface determinants and mRNA of tumor cells and transfersome of these determinants to monocytes. Cancer ImmunolImmunother,2006,55: 808-818.

[16]Janowska-Wieczorek A,et al. Platelet-derived microparticles bindto hematopoietic stem/progenitor cells and enhance theirengraftment. Blood,2001,98: 3143-3149.

[17]Ratajczak J,et al. Embryonic stem cell-derived microvesiclesreprogram hematopoietic progenitors: evidence for horizontaltransfer of mRNA and protein delivery. Leukemia,2006,20: 847-856.

[18]Giusti I, et al. Cathepsin B mediates the pH-dependentpreinvasive activity of tumor-shed microvesicles. Neoplasia,2008,10: 481-488.

[19]Dolo V,et al. Selective localization of matrix metalloproteinase 9,betal integrins,and human lymphocyte antigen class I moleculeson membrane vesicles shed by 8701-BC breast carcinoma cells.Cancer Res,1998,58: 4468-4474.

[20]Dolo V,et al. Matrix-degrading proteinases are shed in membranevesicles by ovarian cancer cells in vivo and in vitro. Clin ExpMetastasis,1999,17: 131-40.

[21]Kim CW,et al. Extracellular membrane vesicles from tumor cellspromote angiogenesis via sphingomyelin. Cancer Res,2002,62:6312-6317.

[22]Kim HK, et al. Elevated levels of circulating plateletmicroparticles,VEGF,IL-6 and RANTES in patients with gastriccancer: possible role of a metastasis predictor. Eur J Cancer,2003,39: 184-191[23]Millimaggi D,et al. Tumor vesicle-associated CD 147 modulatesthe angiogenic capability of endothelial cells. Neoplasia,2007,9:349-357.

[24]Dolo V,et al. Inhibitory effects of vesicles shed by human breastcarcinoma cells on lymphocyte 3H-thymidine incorporation,areneutralised by TGF-beta antibodies. J Suhmicrosc Cytol Pathol,1995,27: 535-541.

[25]Andre F,et al. Tumor-derived exosomes: a new source of tumorrejection antigens. Vaccine,2002,20( Supp 14) : 28-31.

[26]Andreola G,et al. Induction of lymphocyte apoptosis by tumor cellsecretion of FasL-bearing microvesicles. J Exp Med,2002,195:1303-1316.

[27]Wieckowski E,et al. Human tumorderived vs dendritic cellderivedexosomes have distinct biologic roles and molecularprofiles. Immunol Res,2006,36: 247-254.

[28]Kim JW,et al. Fas ligand-positive membranous vesicles isolatedfrom sera of patients with oral cancer induce apoptosis of activatedT lymphocytes. Clin Cancer Res,2005,11: 1010-1020.

[29]Huber V,et al. Human colorectal cancer cells induce T-cell deaththrough release of proapoptotic microvesicles: role in immuneescape. Gastroenterology,2005,128: 1796-1804.

[30]Abrahams VM,et al. Epithelial ovarian cancer cells secretefunctional Fas ligand. Cancer Res,2003,63: 5573-5581.

[31]Valenti R,et al. Human tumor-released microvesicles promote thedifferentiation of myeloid cells with transforming growth factor-betamediatedsuppressive activity on T lymphocytes. Cancer Res,2006,66: 9290-9298.

[32]Shedden K,et al. Expulsion of small molecules in vesicles shed bycancer cells: association with gene expression and chemosensitivityprofiles. Cancer Res,2003,63: 4331-4337.

[33]Valenti R,et al. Tumor-released microvesicles as vehicles ofimmunosuppression. Cancer Res,2007,67: 2912-2915.

[34]Choi DS,et al. Proteomic analysis of microvesicles derived fromhuman colorectal cancer cells. J Proteome Res,2007,6:4646-4655.

[35]Hegmans JP,et al. Proteomic analysis of exosomes secreted byhuman mesothelioma cells. Am J Pathol,2004,164: 1807-1815.

[36]Lerner MP,et al. Selected area membrane shedding by tumorcells. Cancer Lett,1983,20: 125-130.

[37]Ginestra A,et al. The amount and proteolytic content of vesiclesshed by human cancer cell lines corre lates with their in vitroinvasiveness. Anticancer Res,1998,18: 3433-3437.

[38]Mayer C,et al. Release of cell fragments by invading melanomacells. Eur J Cell Biol,2004,83: 709-715.

[39]Sun J,et al. Regulation of MMP-1 and MMP-2 production throughCD147 /extracellular matrix metalloproteinase inducer interactions.Cancer Res,2001,61: 2276-2281.

[40]Gutwein P,et al. ADAM 10-mediated cleavage of L1 adhesionmolecule at the cell surface and in released membrane vesicles.FASEB J,2003,17: 292-294.

[41]Gesierich S,et al. Systemic induction of the angiogenesis switchby the tetraspanin D6. 1A/C0-029. Cancer Res,2006,66:7083-7094.

[42]Sidhu SS,et al. The microvesicle as a vehicle for EMM-PRIN intumor-stromal interactions. Oncogene,2004,23: 956-963.

[43]Skog J,et al. Glioblastoma microvesicles transport RNA andproteins that promote tumor growth and provide diagnosticbiomarkers. Nat Cell Biol,2008,10: 1470-1476.

[44]Al-Nedawi K,et al. Intercellular transfer of the oncogenic receptorEGFRvIII by microvesicles derived from tumor cells. Nat CellBiol,2008,10: 619-624.

[45]Dahiya R,et al. Metastasis-associated alterations in phospholipidsand fatty acids of human prostatic adenocarcinoma cell lines.Biochem Cell Biol,1992,70: 548-554.

[46]Schaffner F,et al. Tissue factor and protease-activated receptorsignaling in cancer. Semin Thromb Hemost,2008,34: 147-153.

[47]Sahni A,et al. Fibrinogen synthesized by cancer cells augmentsthe proliferative effect of fibroblast growth factor-2 ( FGF-2 ) . JThromb Haemost,2008,6: 176-183.

[48]Janowska-Wieczorek A,et al. Enhancing effect of platelet-derivedmicrovesicles on the invasive potential of breast cancer cells.Transfusion,2006,46: 1199-1209.

[49]Janowska-Wieczorek A,et al. Microvesicles derived from activatedplatelets induce metastasis and angiogenesis in lung cancer. Int JCancer,2005,113: 752-760.

[50]Kanazawa S,et al. Monocyte-derived microparticles may be a signof vascular complication in patients with lung cancer. LungCancer,2003,39: 145-149.

[51]Kaplan RN,et al. VEGFR 1-positive haematopoietic bone marrowprogenitors initiate the pre-metastatic niche. Nature,2005,438:820-827.

[52]Wels J,et al. Migratory neighbors and distant invaders: tumorassociatedniche cells. Genes Dev,2008,22: 559-574.

[53]Gao D,et al. Endothelial progenitor cells control the angiogenicswitch in mouse lung metastasis. Science,2008,319: 195-198.

[54]Chaput N,et al. Exosomes for immunotherapy of cancer. Adv ExpMed Biol,2003,532: 215-221.

[55]Chaput N,et al. Dendritic cell derived-exosomes: biology andclinical implementations. J Leukoc Biol,2006,80: 471-478.

[56]Delcayre A,et al. Dendritic cell-derived exosomes in cancerimmunotherapy: exploiting nature's antigen delivery pathway.Expert Rev Anticancer Ther,2005,5: 537-517.

[57]Andre F. Exosomes as potent cell-free peptide-based vaccine.Ⅰ. Dendritic cell-derived exosomes transfer functional MHC classⅠ/peptide complexes to dendritic cells. J Immunol,2004,172:2126-2136.

[58]Thery C,et al. Indirect activation of naive CD4 + T cells bydendritic cell-derived exosomes. Nat Immunol, 2002, 3:1156-1162.

[59]Utsugi-Kobukai S,et al. MHC class Ⅰ-mediated exogenousantigen presentation by exosomes secreted from immature andmature bone marrow derived dendritic cells. Immunol Lett,2003,89: 125-131.

[60]Segura E,et al. Mature dendritic cells secrete exosomes withstrong ability to induce antigen-specific effector immune responses.Blood Cells Mol Dis,2005,35: 89-93.

[61]Matsumoto K,et al. Exosomes secreted from monocyte-deriveddendritic cells support in vitro naive CD4 + T cell survival throughNF-κB activation. Cell Immunol,2004,231: 20-29.

[62]Segura E,et al. ICAM-1 on exosomes from mature dendritic cellsis critical for efficient naive T-cell priming. Blood,2005,106:216-223.

[63]Hsu DH,et al. Exosomes as a tumor vaccine: enhancing potencythrough direct loading of antigenic peptides. J Immunother,2003,26: 440-450.

[64]Zitvogel L,et al. Eradication of established murine tumors using anovel cell-free vaccine: dendritic cell-derived exosomes. Nat Med,1998,4: 594-600.

[65]Taieb J,et al. Chemoimmunotherapy of tumors: cyclophosphamidesynergizes with exosome based vaccines. J Immunol,2006,176:2722-2729.

[66]Escudier B,et al. Vaccination of metastatic melanoma patientswith autologous dendritic cell ( DC) derived-exosomes: results ofthe first phase Ⅰ clinical trial. J Transl Med,2005,3: 10.

[67]Loveland BE, et al. Mannan-MUC1-pulsed dendritic cellimmunotherapy: a phase Ⅰ trial in patients with adenocarcinoma.Clin Cancer Res,2006,12: 869-877.

[68]Mackensen A,et al. Phase Ⅰ study in melanoma patients of avaccine with peptide-pulsed dendritic cells generated in vitro fromCD34 + hematopoietic progenitor cells. Int J Cancer,2000,86:385-392.

[69]Morse MA,et al. A phase Ⅰ study of dexosome immunotherapy inpatients with advanced non-small cell lung cancer. J Transl Med,2005,3: 9.

[70]Mu LJ,et al. Immunotherapy with allotumor mRNA-transfecteddendritic cells in androgen-resistant prostate cancer patients. Br JCancer,2005,93: 749-756.

[71]Hao S,et al. Dendritic cell-derived exosomes stimulate strongerCD8 + CTL responses and antitumor immunity than tumor cellderivedexosomes. Cell Mol Immunol,2006,3: 205-211.

[72]Andre F,et al. Malignant effusions and immunogenic tumorderivedexosomes. Lancet,2002,360: 295-305.

[73]Ginestra A,et al. Membrane vesicles in ovarian cancer fluids: anew potential marker. Anticancer Res,1999,19: 3439-3445.

[74]Taylor DD,et al. MicroRNA signatures of tumor-derived exosomesas diagnostic biomarkers of ovarian cancer. Gynecol Oncol,2008,110: 13-21.

[75]Wolfers J,et al. Tumor-derived exosomes are a source of sharedtumor rejection antigens for CTL cross-priming. Nat Med,2001,7: 297-303.

[76]Dai S,et al. Phase Ⅰ clinical trial of autologous ascites-derivedexosomes combined with GM-CSF for colorectal cancer. Mol Ther,2008,16: 782-790.

[77]Ichim TE, et al. Exposomes as a tumor immune escapemechanism: possible therapeutic implications. J Transl Med,2008,6: 37. 77.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈