首页 理论教育 肿瘤转移了可以治愈吗

肿瘤转移了可以治愈吗

时间:2023-04-24 理论教育 版权反馈
【摘要】:神经母细胞瘤 源于肾上腺髓质、颈部交感神经节、纵隔、腹膜后腔或骨盆的神经嵴前体[1],是儿童最常见的颅外实体恶性肿瘤和婴幼儿最常见的肿瘤。然而,这种交感神经系统来源的胚胎源性肿瘤是最易治愈的儿童实体瘤。超过50%的神经母细胞瘤在临床确诊之前就已经发生远处转移,表现为4期疾病。然而,初诊时肺和中枢神经系统的转移极为罕见。对于每个患者来说,第一次复发的部位取决于原发肿瘤的最初生物学特征及此前的治疗。

◎Nai-Kong Cheung,Brian H. Kushner

神经母细胞瘤(neuroblastoma,NB) 源于肾上腺髓质、颈部交感神经节、纵隔、腹膜后腔或骨盆的神经嵴前体[1],是儿童最常见的颅外实体恶性肿瘤和婴幼儿最常见的肿瘤。在美国,每年确诊的700例NB中有90%以上是<5岁的儿童。

NB因其生长迅速和广泛播散而臭名昭著。然而,这种交感神经系统来源的胚胎源性肿瘤是最易治愈的儿童实体瘤。事实上,有超过90%的局限性NB,包括已经播散到区域淋巴结的患者,经过很小甚至几乎没有细胞毒性疗法都可以获得生存。婴幼儿已经转移的NB治愈率超过90%(通常应用低剂量化疗),且近25%的是幼儿。与NB相反的是,由于骨髓转移导致其他类型儿童实体瘤治愈率少于5%。既往认为很多自发性消退或成熟的无症状神经节瘤是通过婴幼儿尿液儿茶酚胺筛查来明确诊断[2]。被发现的多数病人患有此病的低危形式,而高危疾病的发病率并没有减少。

目前尚未发现环境诱因,也没有发现NB与其他疾病或状态有关。特定染色体区域或遗传位点的重复出现异常是大约50%肿瘤细胞的显著特征(一般为高危型),但在低危型中却很少见。这些染色体异常包括促癌因子MYCN受累以及染色体1p、2p、11q、14q和17q等异常传递。尽管各临床亚组的染色体组成不同,已提出一个能够涵盖所有类型的肿瘤发生模型,集中于共同的前体和共同肿瘤起始突变[3](图7-2)。已发现多个不同的遗传型肿瘤起始染色体区域(如2p、4p、6p、12p和16p)被认为与NB的形成有关,虽然其致病机制尚不明确[4,5]

NB的诊断往往是根据特征性组织病理学发现,或者骨髓中存在肿瘤细胞团(合胞体),以及尿液中香草基扁桃酸(VMA)、高香草酸(HVA)或其他儿茶酚胺类水平升高等[6]。对于NB原发灶的评价,虽然MRI的应用越来越多,但CT常作为明确软组织和相关腺病的标准检查。虽然骨扫描可以用来区别骨皮质和髓质受累,但对于远处播散灶的检测常选择放射性核素(123I-MIBG,儿茶酚胺类前体的同位素)[7]。MRI和放射性核素扫描依然是评估是否存在硬脊膜和蛛网膜损害的金标准。虽然普通X线扫描可以用来对溶解性病灶的筛查,而MRI和放射性核素扫描仍是病灶是否具有活性的最终诊断。(18F-FDG)PET常用来诊断转移复发性NB[8]

图7-2 神经母细胞瘤主要亚型的发展图解

注: 交感神经系统的二倍体前体遗传紊乱,获得整条染色体,从而导致三倍体细胞的形成,或者伴随染色体结构改变,形成二倍体或四倍体( -表示缺失,+表示获得)。低危表示经过很少或者不治疗即可获得很好的预后;高危表示尽管经过综合治疗,预后仍很差。而儿童NB患者伴有骨转移虽然缺乏MYCN扩增,经过适度化疗仍可有较好的预后(最好划分为中危)。

7.2.1 转移性神经母细胞瘤

超过50%的神经母细胞瘤在临床确诊之前就已经发生远处转移,表现为4期疾病。与其他实体瘤不同,NB高发骨和骨髓转移。而且,在局限性阶段(1、2和3期)很少演变成为转移性第4期。因此,临床用于防止远处扩散的辅助治疗并不普遍适用于这种肿瘤。NB主要通过血行和淋巴转移。然而,初诊时肺和中枢神经系统(CNS)的转移极为罕见。作为一种独特的肿瘤,有少部分广泛播散转移的4S期NB可以发生自发性消退,这和其他致命性4期肿瘤明显不同(表7-1)[9,10]。第4期肿瘤通常发生在年龄超过18个月的儿童,伴随骨髓、骨皮质和淋巴结转移,而4S期的远处转移器官(只限于婴儿)是肝和皮肤,不太常见于骨髓,无骨皮质转移[16]

表7-1 首次诊断及初次复发的4期及4S期神经母细胞瘤患者转移位置(百分率)

(资料来源: Berthold Fand SImon T. Clinical Presentation. In: Cheung NK,Cohn S,eds. Neuroblastoma: Springer,2005)

尽管4S期NB有经轻微治疗或不经治疗自发消退的趋向,但典型的4期NB仍需要细胞毒性药物,并且常为积极的多学科综合治疗。预后的显著差异往往与转移的部位无关,因此,肝转移的NB儿童患者相对于转移到其他器官有较差的预后。但4S期婴儿患者即使肝转移并不明显预后不良。即使是发生了脑膜转移的4S期患者也有自然消退的报道,这在4期患者可是高度致命的[11]。仅伴有远处淋巴结转移(没有肝或骨髓的转移)的4期NB患者也被认为是可能治愈的[12]

转移预后的决定因素是诊断时患者的年龄[13,14]。一个最明显的证据是婴儿患者即使发生了广泛骨髓转移,经过极为适度剂量的化疗后仍有治愈可能[13]。而且,局灶性NB年轻患者很少在远处复发,但类似肿瘤在成年患者最终会全部转移,尽管症状比儿童更隐匿,最终将累及如骨髓、骨皮质和淋巴结[14]。“土壤”(宿主)对“种子”(肿瘤)的侵袭性影响可能会随着年轻患者生存至年老时而变得明显[15,16]。NB的器官特异性,伴有持续生长和消退对立过程,并且明显受患者年龄变化的影响,是其最独特的生物学特性(表7-2)。

在病情进展或复发时,骨和骨髓是最常见的转移部位,而且往往发生在患者达到临床缓解之后。过去10年中肿瘤得到了更有效的局部控制,因此原位肿瘤复发不再是大问题[17,18]。对于每个患者来说,第一次复发的部位取决于原发肿瘤的最初生物学特征及此前的治疗。例如,只有软组织转移的患者,复发肿瘤倾向局限于软组织内。另一个例子是发生肺转移,常常是使用NB污染的自体造血干细胞输注的结果。最近,由于使用密集的诱导化疗加抗GD2单克隆抗体巩固治疗,骨髓复发率有所下降,而CNS的转移复发则变得更为普遍。一线治疗后转移的分布格局似乎取决于全身性疾病的控制程度。化疗和生物治疗不能达到的部位极有可能为肿瘤提供庇护所,成为肿瘤后期复发的重要原因。

表7-2 神经母细胞瘤的显著特征

目前日益复杂和敏感的检测方法可以降低临床肿瘤复发的严重性。随着123Ⅰ-MIBG的引进和广泛骨髓检测,使得目前无症状复发(多在骨髓)比较容易发现[19,20]。在这些研究中,123Ⅰ-MIBG比131Ⅰ-MIBG扫描、骨扫描或CT/MRI更为敏感[20]。应用123Ⅰ-MIBG而不是131Ⅰ-MIBG对无症状患者进行监测,由于早期发现和早期干预,无论是从诊断时间还是从复发时间开始算起[20],可进一步减少广泛复发,使其有更长的生存时间。

脑实质内复发可无症状,但通常会引起头痛、呕吐和(或)局灶性神经功能缺陷[21,22]。复发通常在化疗结束后9个月内出现,常无全身复发的证据。虽然进行了积极的综合治疗,CNS复发后通常伴有新的脑实质或脑膜及全身转移,病程进展迅速且致命。目前有一种新的治疗方案有望改变这令人失望的结果(稍后讨论)。

7.2.2 预后因素

低危和中危的NB,包括局灶性和转移性病变,多可治愈。其特征是可自发性或在适度剂量化疗后完全消退,或少部分分化成为成熟的良性神经节瘤。相反,尽管采取积极的多模式综合治疗,高危NB的治愈率只有20% ~30%[14,23-25]。在众多临床和生物学预后因素中[1,10],诊断时的年龄(超过18个月)和转移分期是最重要的因素。转移部位的影响很大程度取决于确诊时患者的年龄及疾病复发时的年龄。例如,婴儿的骨髓转移往往可以自发性消退,低剂量化疗将达90%以上的治愈率。相反,骨髓转移可以导致年龄较大儿童超过70%的死亡,成年患者则很少可以治愈。类似的统计数据同样适用于婴幼儿、儿童和成年人的骨转移。

转移的特异性部位也具有预后意义。因此,4期患者发生CNS、肺或肝转移预后最差,而局限于淋巴结转移、无骨髓累及的情况,一般治愈可能性较大。高危患者经常有高血清乳酸脱氢酶(LDH>1500U/L)和高血清铁蛋白,以及尿VMA∶HVA比值异常。原癌基因MYCN基因扩增(30%NB)与治疗无反应、肿瘤复发及CNS转移相关。它通常伴有1p的杂合性丢失(LOH)和17q扩增,而11q的LOH和3p缺失则与无MYCN扩增性NB密切相关,并可预测其复发[1]。年幼患者(15~18个月以下)的肿瘤二倍体和Trk A受体(亦称NTRK1)高表达常与NB较好预后有关,而Trk B高表达(也称为NTRK2)则预后较差。除了MYCN基因扩增水平以外,很少有研究探讨NB原发瘤与转移灶的分子标记,而其在原发瘤和转移灶中表达水平相似[26]

7.2.3 转移性神经母细胞瘤的治疗

(1) 剂量密集性诱导化疗

经典高危NB通常是原发部位的较大肿瘤伴有广泛转移。初始治疗的目标是快速减少肿瘤负荷,主要采用包括环磷酰胺、异环磷酰胺、多柔比星、顺铂、卡铂、依托泊苷和托泊替康等的不同组合,结合剂量密集或高剂量强度策略(即在较短的诱导期内使用相同或更高的总剂量)[23,27,28]。3~5个周期的高剂量化疗[29]和放疗(2100~3000c Gy)可以使原发部位肿瘤复发显著减少到10%以下[17,18]。全身转移的控制是一个更为艰巨的挑战。自20世纪80年代以来,广泛应用清髓性化疗,有时联合全身照射(TBI,1000~1200c Gy),在3个多中心随机研究中有两个证实能够改善预后[24,30-32]。二联、三联、异体或联合131Ⅰ-MIBG/自体移植目前正在临床试验中,其中一些已取得了令人鼓舞的结果[33]。TBI目前使用较少,部分原因是其存在远期毒性[34,35]

(2) 靶向分化抗原的抗体疗法

针对化疗耐药NB的生物疗法试图消灭“种子”并改变“土壤”,特别是耐药的骨髓转移几乎均是致命的后果[36]。近期已经研制了一些针对NB相关神经节苷脂GD2的单克隆抗体[37-39]。GD2是广泛表达于黑色素瘤、非小细胞肺癌、骨与软组织肉瘤、视网膜母细胞瘤和脑肿瘤的黏附分子。除了神经细胞、皮肤细胞和痛觉纤维以外,其很少表达于正常组织。小鼠Ig G3抗GD23F8单克隆抗体进行广泛的临床测试[37,40-49]。最近COG随机研究[40]发现移植术后联合使用抗神经节苷脂GD2嵌合单克隆抗体和粒细胞-巨噬细胞集落刺激因子(GM-CSF)或白细胞介素-2的交替使用,可获得更好的无进展生存[18],目前已进行临床Ⅰ期试验[41]

使用131Ⅰ-3F8显像显示NB肿瘤的选择性摄入,肿瘤/非瘤比率高[42]。3F8介导了人粒细胞和单核细胞的抗体依赖性细胞毒性(ADCC)作用[50,51]。嵌合或人Ig G抗体优先与淋巴细胞158位点上缬氨酸的Fcy R3A等位基因型相互作用,这与利妥昔单抗卓越的临床疗效相关[52,53]。较H131等位基因型——鼠Ig G抗体更优先与Fcy R2A-R131型相互作用,导致级差有丝分裂潜能和细胞因子释放[54,55],从而引起3F8治疗NB的疗效不同[49]。3F8也引起NB细胞补体介导的细胞毒性作用[56],而NB细胞缺乏衰变加速因子[57]和CD59[58]。NB细胞上补体沉积可以通过i C3b受体(MAC-1, CR3,CD11b/CD18或整合素αmβ2)增强白细胞ADCC作用[59-61]。还有确凿的临床前期证据证实,鼠Ig G3可以提高疫苗的免疫原性,诱导强有力的长期持久的保护性免疫[62]

抗GD2单克隆抗体在小规模Ⅰ期和Ⅱ期试验中已取得临床效果[37,39,44,63,64],作为统一辅助治疗手段,斯隆-凯特琳癌症中心(MSKCC)的一项3F8大规模研究取得了令人鼓舞的成果[46,65]。随机COG研究结果取得了重大进展,并支持这种免疫治疗高危NB的优势[?40]。在2.1年随访时间内,免疫治疗在无事件生存率[(66±5)%对比(46±5)%,2年,P=0.01]和总生存率方面[(86±4)%对比(75±5)%, 2年,P=0.02,未调整中期分析]优于标准疗法[40]。许多因素倾向于如儿童癌症合作组[66]和MSKCC[48]那样联合使用GM-CSF。因此,高危NB的标准治疗能延长T淋巴细胞生存,而仅仅短暂抑制粒细胞和单核细胞的产生[67],并且GM-CSF可诱导中性粒细胞和嗜酸性粒细胞[68],启动的粒细胞和单核细胞-巨噬细胞则可产生更强的抗肿瘤细胞毒性[51,69-74]

最近的一份研究报告强调了GM-CSF给药途径的重要性,他们通过组织学和(或)MIBG扫描对80例化疗耐药的NB患者骨髓检测3F8/GM-CSF。在54例接受皮下注射GM-CSF的患者中,3年无进展生存期(PFS)为36%[临床试验NCT00072358],显著优于接受2小时静脉注射GM-CSF的26例患者12%(P=0.003)[临床试验NCT00002560], R/R和H/R形式的PFS显著优于H/H形式(P=0.004), FCGR2A、Feγ受体在骨髓中表达,而淋巴细胞没有表达。80%NB患者骨髓转移达到病理完全缓解(CR),并取得约40%的MIBG完全缓解。常见的毒性反应是疼痛、荨麻疹,可以经门诊治疗。

在最近3F8临床应用的更新中,分析了从1991~2007年间157例连续使用3F8治疗方案并获得首次缓解的高危NB患者。90%的患者年龄超过18个月伴有骨髓和(或)骨转移,45%患者为MYCN基因扩增型NB。所有患者均接受标准剂量密集诱导治疗。患者接受:①3F8( +/-131Ⅰ-3F8靶向放疗)[临床试验NCT00002634,NCT00040872],而不是自体造血干细胞移植(SCT);②3F8结合静脉注射GM-CSF [临床试验NCT00002560];③3F8结合皮下注射GM-CSF [临床试验NCT00072358]。第1组5年以上长期PFS为(40±8)%。PFS结果接近包括740MBq/kg131Ⅰ-3F8的治疗。第3组的PFS提高到(61±7)%,而第2组PFS为(51 ±7)%。所有3组的PFS均优于使用SCT为标准治疗的历史对照[75]。患者经抗AB2和抗-抗AB3抗体治疗后呈现生存优势[47],符合活化免疫反应(改变转移“土壤”)的抗肿瘤效果。

(3) 放射性碘标记3F8治疗NB全身性转移

选择性靶向治疗原发肿瘤和淋巴结、骨髓、骨转移病灶,并且比131Ⅰ-MIBG具有更优越的灵敏度。其辐射效应半径约800μm,接受131Ⅰ-3F8治愈剂量治疗的理想肿瘤大小为2mm。因为缺乏临床Ⅰ期的髓外毒性研究,以740MBq/kg剂量的131Ⅰ-3F8作为高危NB患者(n=35)的多模式综合治疗组成。毒性包括自限性疼痛、发热、皮疹,以及需要骨髓移植的骨髓抑制。除了甲状腺功能减退以外,未观察到其他髓外毒性。经持续随访(从诊断开始6~10年),诊断时年龄超过18个月的NB患者经过131Ⅰ-3F8治疗的总生存率为40%[75,76]。利用这种方式治疗儿童患者并没有发现意外的后期影响(包括继发性白血病)。

鞘内注射放射性标记的单克隆抗体进行放射免疫治疗(RIT)有独特的优势,可以向病损部位提供高剂量的辐射,同时减少骨髓、血液和其他器官的辐射损伤[77]。最近,已完成一项脑室内注射(IO)超出一般剂量的131Ⅰ-3F8治疗脑膜转移患者临床Ⅰ期试验[78]。其毒性反应包括自限性头痛、发热、呕吐。最大耐受剂量为10370MBq。13例患者中有3例取得了客观影像学和(或)病理痊愈效果。

(4) 区域性RIT中抗-B7-H3抗体的应用

单克隆抗体8H9是针对细胞表面抗原4Ig-B7-H3的鼠Ig G1,该抗原普遍表达于绝大多数实体肿瘤[79]。8H9可以被放射性124Ⅰ或131Ⅰ标记,并保留免疫活性。在Ⅰ期临床试验中,131Ⅰ-8H9治疗剂量从370~2220MBq,未发现剂量限制性毒性。计算出的脑脊液平均辐射剂量为36.3(12.8~106)c Gy/MCI; 血液平均剂量为2.5c Gy/MCI。一项回顾性分析48例中枢神经系统转移的复发性NB患者研究,其中15例在手术后、化疗和脑脊髓照射后接受131Ⅰ-3F8或131Ⅰ-8H9放射免疫治疗(IO-RIT),全身性治疗包括3F8/GM-CSF免疫治疗、13-顺维甲酸和替莫唑胺。其中,13例在6~58个月内无神经系统NB,并且11例完全消退。1例在22个月死于感染性疾病,尸检未证实有转移;1例15个月后肺和骨髓转移。相比之下,接受常规治疗的33例患者有31例死亡,中枢神经系统合并全身转移的中位生存时间为5.8个月,而单纯中枢神经系统转移的生存时间为11.5个月。对中枢神经系统转移的IO-RIT抢救性治疗方案对年轻患者耐受性良好,尽管他们事先经过高强度的细胞毒性治疗。这种疗法有可能从根本上增加生存时间,并获得比预期更好的生活质量[80,81]

(5) MIBG疗法

MIBG是一种结构类似肾上腺素的胍乙啶衍生物。通过特异性和被动机制促进NB摄取MIBG。当MIBG被123Ⅰ标记时是理想的肿瘤显像药物,而标记131Ⅰ时则是适宜的治疗药物。131Ⅰ-MIBG已在单、双灌注研究及剂量递增试验中作为单独药物被广泛评估[82-88],对化疗耐药的和新诊断的NB都表现出非常好的效果[89],尽管完全缓解仍然很少。131Ⅰ-MIBG治疗的耐受性良好,不良反应限于骨髓抑制(通常需要干细胞支持)、甲状腺功能减退、唾液腺炎[90]。当然,放射性可能会诱发白血病[91,92]。目前正在持续研究如何在机体可接受的毒性范围内最好地将131Ⅰ-MIBG治疗与常规或髓性化疗或其他药物(类放射性药物)联合应用以增加抗肿瘤能力[93-98]。考虑到将来某个时间可能需要进行如131Ⅰ-MIBG治疗等补救治疗,对诱导中的高危NB患者目前可采集大量外周血造血干细胞。

(6) 应用维甲酸分化治疗

维生素A或视黄醇(主要是来源于人类的饮食)对神经嵴正常发育非常关键。细胞内视黄醇代谢成为全反式维甲酸(ATRA),然后活化一系列核受体并形成异源性二聚体,调节基因转录[99,100]。全反式维甲酸治疗可减少NB细胞MYCN基因的转录[101]和表达[102],增加细胞周期蛋白依赖性激酶抑制剂p27的表达[103,104],导致细胞G1期阻滞和形态分化[101,105]。低剂量13-顺维甲酸(13-cis-RA)并不能提高生存率[106],但在一项随机Ⅲ期临床试验中[30],高剂量治疗组患者3年PFS为(46±6)%,而未治疗组为(29±5)% (P=0.027)。已经证实维甲酸可以通过调节MHC-Ⅰ类抗原呈递,增加NB细胞对T细胞敏感性[107]。一个有希望的发现是N-(4-氨基苯酚)维甲酰胺或(4-HPR)可以在体外抑制维甲酸耐药NB细胞的生长[108,109,110],4-HPR的静脉和口服制剂正在进行在临床试验[111]

(7) 靶标和信号通路特异性治疗策略

在染色体水平,1p和11q缺失、17q的不平衡扩增和MYCN基因扩增往往与NB转移相关。MCYN的扩增和表达促进转移的具体机制仍不清楚,蛋白激酶C(PKC)、c-fos和NFKB可能参与。蛋白激酶C可磷酸化许多可以刺激NB增长的生长因子受体,如胰岛素样生长因子受体(IGFR)、表皮生长因子受体(EGFR)和c-Met(肝细胞生长因子HGF受体)[112]。MYCN同样下调神经细胞黏附分子(NCAM),因此促进NB播散[113]。MYCN的表达经常伴随着Twist上调, Twist是调节EMT的转录因子,促进肿瘤细胞运动及转移[114]。当MYCN驱动细胞增殖时,Twist通过抑制ARF/P53通路促进细胞凋亡[115,116]。nm23-H1和H2基因是核苷二磷酸激酶(NDPKs),用于合成核苷三磷酸(NTP)而不是ATP。在NB中,n M23-H1和H2由于染色体17q获得及MYCN的过表达而表达上调。高表达的人nm23-H1通常伴随着侵袭潜能的降低[117,118],而在前列腺癌、非霍杰金淋巴瘤及NB中nm23-H1高表达可导致相反的结果[119]。抗失巢凋亡能力一直是肿瘤细胞转移的必备条件[120]。Tr KB在NB中高表达,可增加HGF及其受体c-Met、MMPs及丝氨酸蛋白酶类(包括尿激酶和组织型纤溶酶原激活剂)的表达,从而促进细胞运动和转移[121]。最近证明,caspase-8和未结合整合素的缺失与转移潜能增加有关[122,123]

基质细胞衍生因子(SDF)-1/CXCL12由骨髓间质细胞和成骨细胞表达,并且能够促进前列腺癌骨转移[124]。NB表达SDF-1的CXCR4趋化因子受体[125],为其骨转移提供向导[126]。SDF-1上调整合素如VLA2、VLA3和VLA6、CD56、c-kit、TNF-α、VEGF、IL-8和GM-CSF,这些也能促进肿瘤增生和在骨髓微环境中的生存[127]。肝中CXCR4的表达上调及肾上腺间质下调,可能通过细胞因子IL-5和IFN-γ[128]。然而,从患者骨髓中分离的NB上的CXCR4可能并不具备功能[129]

AMD3100是可以阻断CXCR4的肽类,并且已经证实应用于非霍杰金淋巴瘤及骨髓瘤是安全的[130]。它可能有调节NB转移潜能。NB细胞同样也表达细胞因子受体CCR2,可以和骨髓间质细胞和内皮细胞分泌的单核细胞趋化蛋白(MCP-1)相互作用[131]。类似于骨髓转移,NB骨转移的机制复杂,涉及肿瘤和间质细胞在RANK/RANKL轴、IL-6、BDNF、PTHr P和炎症因子之间的相互作用[132]

Trk B:临床上,尽管高危的NB最初对化疗敏感,最终总会出现化疗抵抗。这种现象是多方面因素所致,例如药物外排泵[133]及TP53的突变[134,135]。此外,耐药的NB细胞株中BDNF[136]和Trk B[137]上调。Trk B基因研究认为具有抗失巢凋亡和转移功能[120]。近来的研究已经识别Trk B通路的多个靶点:Trk酪氨酸激酶、PI3k、AKT及其下游基因。Trk靶向治疗药物CEP-751已经证实对NB的鼠移植模型有效[138],并且已经用于NB的临床试验。而且,许多PI3k通路的靶向治疗药物已经处于临床前期和临床试验中,这些药物可能增强化疗药物对进展性NB的毒性作用。

MDR和MRP:多药耐药相关蛋白(MRPs)是细胞解毒转运蛋白家族成员。其中,MRP1、MRP2和MRP3认为与多种天然产物和抗癌药物的耐药相关[139],包括长春碱类、蒽环类、表鬼臼毒素、喜树碱家族拓扑异构酶Ⅰ抑制剂、谷胱甘肽等。MRP4(ABCC4)可调节巯嘌呤、硫鸟嘌呤、抗反转录病毒复合物[140]及伊立替康和其活化代谢产物SN-38的抗药性[141]。同MRP1类似,MRP4在高危NB中的高表达提示较差的临床预后,这一点和MYCN基因的表达和预后相似[133]。各种应用反义产物调节这些转运蛋白活性的尝试只取得了有限的临床价值。

p53通路缺陷:p53是调控细胞周期检查节点和凋亡的关键因子,在受到外界应激特别是DNA损伤时,以序列特异性结合的方式绑定DNA并转录众多基因,包括p21、MDM2、BAX和NOXA[142]。MDM2因p53的激活上调,并且以泛素蛋白连接酶方式作用,p53通过蛋白体介导的反馈回路降解p53[143]。MDM2的上调通过增加其降解而抑制p53的活性。p14ARF直接绑定并拮抗E3泛素化的活性而活化p53通路[144]。p14ARF的失活导致MDM2水平上调,从而抑制p53的活性。尽管约50%的人类恶性肿瘤中p53基因发生突变[145],但在初诊NB中这种突变现象罕见( <2%)[135]。但是,在来源于复发性NB的细胞株中发现p53/MDM2/pl4ARF通路存在缺陷[146],约50%的新鲜标本中存在上述缺陷。体外实验证实,p53/MDM2/pl4ARF通路缺陷常导致NB的耐药,所以重新激活p53通路是逆转耐药的可行策略。小分子p53激活剂(如nutlin-3)有潜在临床应用价值[147]。选择性细胞周期节点酶(如CHK1)抑制剂可以用于增强DNA损伤替代性治疗,特别是p53通路有缺陷时。

间变性淋巴瘤受体酪氨酸激酶(ALK):ALK是一类酪氨酸激酶跨膜受体,与神经营养素受体及MET癌基因同源,在神经系统的发育过程中有限表达[148]。许多人类肿瘤由于染色体易位,通过转录本融合的方式活化ALK信号通路[149]。人类NB细胞系表达ALK转录本及蛋白[150]。最近通过ALK酶区域药理学拮抗剂筛选NB细胞系,ALK已经被认为是NB的分子靶点[8,151-155]。在12.4%的散发NB病例中,激活突变同样需要。ALK是某一亚型NB的潜在治疗靶点。

(8) 血管生成

在高危NB中,多条血管生成通路被活化[156]。在进展期肿瘤中,VEGF、VEGF-B、VEGF-C、b FGF、Ang-2、TGF-α、和PDGF-α明显上调。PDGF-α的表达和患者的生存明显相关。一些药物有治疗NB的可能。维甲酸类药物如芬维A胺(fenretinide)[157]以及TNP-470[158,159]、沙利度胺[160]和内皮抑素[161,162]在临床前期试验中已经显示其有效性,使用贝伐单抗[163]或者VEGF-TRAP[164]抑制VEGF也已经获得理想效果。在最近的一个儿童使用贝伐单抗的临床Ⅰ期试验中发现治疗耐受性很好。然而,却没有出现预期的反应[165]。由于NB的多条血管生成通路活化,针对多条通路或者联合化疗及放疗可能是获得临床疗效的必要条件。

(9) 淋巴细胞介导的治疗

1) 使用自然杀伤(NK)细胞和T细胞的细胞疗法

NK细胞表达CD16,其低亲和力Fc/R3受体是结合单克隆抗体(如3F8或chl4.18)、促发NK细胞介导的抗体依赖性细胞介导的细胞毒作用(ADCC)所必需的。NK细胞携带激活受体(例如,DNAM-1、NKG2D、NKp46和NKp30),其配体表达于NB细胞[166]。人类NK细胞能有效抑制NB的NOD/SCID小鼠移植瘤[167]。如果它们缺乏特异性HLA-Ⅰ类分子的杀伤抑制性受体(KIR),即被赋予杀伤能力[168-170],这和HLA不相配移植治疗急性粒细胞白血病后同种异体反应优势是一致的[171-173]。在高危NB的儿童中接受自体造血干细胞移植联合3F8免疫治疗,可提高总体和无瘤生存期,这与缺乏一个或多个NK细胞抑制性KIR的HLA-Ⅰ类配体相关。这些结果表明,NK细胞的耐受性自体干细胞移植术后发生调变,并且KIR-HLA基因型可能影响以单克隆抗体为基础的免疫治疗。激活KIR可能有助于NBNK细胞的易感性。为了避免NBHLA抗原低表达的影响,T细胞也可以重新定位于使用抗体为基础的嵌合受体,目前早期临床结果令人鼓舞[174,175]

2) 疫苗

临床前期研究表明,表达多个转基因免疫调节分子的全细胞疫苗是免疫系统的强有力刺激剂。使用联合转染IL-2和淋巴细胞趋化因子(lymphotactin,LTN)的NB细胞株,已经在Ⅰ期临床试验中表现出抗肿瘤效应[176]

采用自体NB肿瘤细胞,在7例患者检验类似策略,副作用可耐受。结果显示注射部位出现CD4+和CD8+淋巴细胞、嗜酸性粒细胞和树突状细胞浸润。在体外实验中,外周血淋巴细胞能更好地识别肿瘤[177]。最近使用GD2模拟疫苗的研究也显示出可喜的临床结果[178]

3) 免疫细胞因子

细胞介导的细胞毒作用已证实在体外和动物模型对肿瘤的高度有效。免疫细胞因子[179,180]在激活和重定向人类肿瘤效应器中显示了显著成效。这些研究大多集中在NK细胞、T细胞[180]和中性粒细胞[60]。IL-2细胞免疫因子可以消除小鼠NB转移,同时诱导长期抗肿瘤免疫[179,180]。随着IL-2免疫细胞因子的初步成功,构建其他细胞因子也取得了令人鼓舞的成果,包括IL-12、肿瘤坏死因子和淋巴毒素。最近,一种质粒DNA疫苗结合IL-2免疫细胞因子在小鼠模型中证明比任何一个单独用药更为有效[181]。在Ⅰ期试验中, hul4.18-IL-2通过升高血清可溶性IL-2受体(s IL-2Ra)可使淋巴细胞激活或调节免疫[182]

7.2.4 今后的研究方向

如果能够坚持目前的NB治疗的成功方向,使用很少或不使用任何细胞毒药物,局灶性或4S期NB患者的治愈率可预期超过85%,而对余下的15%患者采用适度风险的方案。婴幼儿4期NB患者也可以使用一些细胞毒治疗,以保持其治愈率大于90%。然而,尽管使用高毒性药物治疗,高危4期NB的长期生存率仍然不到25%,这是令人难以接受的。失败的常见原因是软组织转移(如腹膜后、肝、中枢神经系统和肺)和骨髓转移对化疗的耐药。虽然这些难治性病例表现为总体的耐药,但其主要原因为肿瘤微小残留。

研发抗肿瘤细胞(“种子”)的新型有效药物是显而易见的解决方案,当肿瘤仅有微小残留时也应探索针对肿瘤微环境(“土壤”)的疗法。然而,由于转移和化疗耐药NB相关的复杂基因标签,需要发展多条对“种子”针对性的治疗途径。同样,对于“土壤”,多种途径的药物策略也是必要的。令人鼓舞的是,针对单一抗原(神经节苷脂GD2)的单克隆抗体可以降低化疗耐药,提高NB患者长期生存期。随着对宿主免疫和免疫基因组学的进一步理解(例如,FCγR多态性和KIR不匹配),可以提前预知携带响应基因型的患者。为了避免非响应型基因型,可能需要将单克隆抗体进行基因修饰并使用适当的非匹配NK细胞开展细胞疗法。但规律性低剂量化疗并不破坏免疫系统,通路特异性小分子结合标准化疗可以降低骨髓毒性和器官损伤,那么转移性NB的最终治愈指日可待[183]

(梁磊 译,钦伦秀 审校)

参考文献

[1]Park JR, et al. Neuroblastoma: biology, prognosis, andtreatment. Pediatr Clin North Am,2008,55: 97-120.

[2]Brodeur G,et al. Revisions of the international criteria forneuroblastoma diagnosis,staging and response to treatment. J ClinOneal,1993,11: 1466-1477.

[3]Kushner BH. Neuroblastoma: a disease requiring a multitude ofimaging studies. J Nucl Med,2004,45: 1172-1188.

[4]Kushner BH,et al. Extending positron emission tomography scanutility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucosepositron emission tomography,sole imaging modality in follow up ofpatients. J Clin Oneal,2001,19: 3397-3405.

[5]Woods WG,et al. Screening of infants and mortality due toneuroblastoma. N Engl J Med,2002,346: 1041-1046.

[6] Brodeur GM. Neuroblastoma: biological insights into a clinicalenigma. Nat Rev Cancer,2003,3: 203-216.

[7]Maris JM,et al. Chromosome 6p22 locus associated with clinicallyaggressive neuroblastoma. N Engl J Med,2008,358: 2585-2593.

[8]Mosse YP,et al. Identification of ALK as a major familialneuroblastoma predisposition gene. Nature,2008,455: 930-935.

[9]Du Bois SG,et al. Metastatic sites in stage Ⅳ and IVSneuroblastoma correlate with age,tumor biology,and survival. JPediatr Hematol Oncol,1999,21: 181-189.

[10]Cheung N-KV, et al, eds. Neuroblastoma. New York:Springer. 2005.

[11]Kramer K,et al. Favorable biology neuroblastoma presenting withleptomeningeal metastases: a case presentation. J Pediatr HematolOncol,2004,26: 703-705.

[12]Rosen EM,et al. Stage Ⅳ ~ N: a favorable subset of children withmetastatic neuroblastoma. Med Pediatr Oncol, 1985, 13:194-198.

[13]London WB,et al. Evidence for an age cutoff greater than 365days for neuroblastoma risk group stratification in the Children'sOncology Group. J Clin Oncol,2005,23: 6459-6465.

[14] Schmidt ML,et al. Favorable prognosis for patients 12 to 18months of age with stage 4 nonamplified MYCN neuroblastoma: aChildren's Cancer Group study. J Clin Oncol,2005,23:6474-6480.

[15]Kushner BH,et al. Chronic neuroblastoma. Cancer,2002,95:1366-1375.

[16]Kushner B,et al. Neuroblastoma in adolescents and adults: theMemorial Sloan Kettering experience. Med Pediatr Oncol,2003,41: 50S-51S.

[17]Haas-Kogan et al. Impact of radiotherapy for high-riskneuroblastoma: a Children's Cancer Group study. lnt J RadiatOncol,Biol Phys,2003,56: 2S-3S.

[18] Kushner BH,et al. Hyperfractionated low-dose radiotherapy forhigh-risk neuroblastoma after intensive chemotherapy and surgery.J Clin Oncol,2001,19: 2821-2828.

[19]Kushner BH, et al. Impact of metaiodobenzyl guanidinescintigraphy on assessing response of high-risk neuroblastoma todose-intensive induction chemotherapy. J Clin Oncol,2003,21:1092-1096.

[20]Kushner B,et al. Sensitivity of surveillance studies for detectingaysmtomatic and unsuspected relapse of high-risk neuroblastoma. JClin Oneal,2008,27: 1041-1046.

[21]Kramer K,et al. Neuroblastoma metastatic to the central nervoussystem. The Memorial Sloan-Kettering Cancer Center experienceand a literature review. Cancer,2001,91: 1510-1519.

[22]Matthay KK, et al. Central nervous system metastases inneuroblastoma: radiologic,clinical,and biologic features in 23patients. Cancer,2003,98: 155-165.

[23]Pearson AD,et al. High-dose rapid and standard inductionchemotherapy for patients aged over 1 year with stage 4neuroblastoma: a randomised trial. Lancet Oncol,2008,9:247-256.

[24]Berthold F,et al. Myeloablative megatherapy with autologous stemcellrescue versus oral maintenance chemotherapy as consolidationtreatment in patients with high-risk neuroblastoma: a randomisedcontrolled trial. Lancet Oncol,2005,6: 649-658.

[25]de Bernardi B,et al. Disseminated neuroblastoma in children olderthan one year at diagnosis: comparable results with threeconsecutive high-dose protocols adopted by the Italian co-operativegroup for neuroblastoma. J Clin Oncol,2003,21: 1592-1601.

[26]Brodeur GM, et al. Consistent N-myc copy number insimultaneous or consecutive neuroblastoma samples from sixtyindividual patients. Cancer Res,1987,47: 4248-4253.

[27]Cheung NK,et al. Chemotherapy dose intensity correlates stronglywith response, median survival and median progression-freesurvival in metastatic neuroblastoma. J Clin Oncol,1991,9:1050-1058.

[28]Kushner BH,et al. Reduction from seven to five cycles ofintensive induction chemotherapy in children with high-riskneuroblastoma. J Clin Oncol,2004,22: 4888-4892.

[29]La Quaglia MP,et al. The impact of gross total resection on localcontrol and survival in high-risk neuroblastoma. J Pediatr Surg,2004,39: 412-417.

[30]Matthay KK,et al. Treatment of high-risk neuroblastoma withintensive chemotherapy,radiotherapy,autologous bone marrowtransplantation, and 13-cis-retinoic acid. Children's CancerGroup. N Engl J Med,1999,341: 1165-1173.

[31]Ladenstein R,et al. 28 years of high-dose therapy and SCT forneuroblastoma in Europe: lessons from more than 4000procedures. Bone Marrow Transplant,2008,41 ( Suppl 2 ) :S118-127.

[32]Pritchard J,et al. High dose melphalan in the treatment ofadvanced neuroblastoma: results of a randomised trial ( ENSG-l)by the European Neuroblastoma Study Group. Pediatr BloodCancer,2005,44: 348-357.

[33]Fish JD,et al. Stem cell transplantation for neuroblastoma. BoneMarrow Transplant,2008,41: 159-165.

[34]George RE,et al. High-risk neuroblastoma treated with tandemautologous peripheral-blood stem cell-supported transplantation:long-term survival update. J Clin Oncol,2006,24: 2891-2896.

[35]Hobbie WL,et al. Late effects in survivors of tandem peripheralblood stem cell transplant for high-risk neuroblastoma. PediatrBlood Cancer,2008,51: 679-683.

[36] Matthay KK,et al. Correlation of early metastatic response by1231-metaiodobenzylguanidine scintigraphy with overall responseand event-free survival in stage Ⅳ neuroblastoma. J Clin Oncol,2003,21: 2486-2491.

[37]Cheung NK,et al. Ganglioside GD2 specific monoclonal antibody3F8: a phase I study in patients with neuroblastoma and malignantmelanoma. J Clin Oncol,1987,5: 1430-1440.

[38]Saleh MN,et al. A phase I trial ofthe murine monoclonal anti-GD2antibody 14. G2a in metastatic melanoma. Cancer Res,1992,52:4342-4347.

[39]Yu A,et al. Phase I trial of a human-mouse chimeric antidisialogangliosidemonoclonal antibody ch14. 18 in patients withrefractory neuroblastoma and osteosarcoma. J Clin Oncol,1998,16: 2169-2180.

[40]Yu A,et al. Anti-GD2 antibody with GM-CSF,interleukin-2,andisotretinoin for neuroblastoma. N Engl J Med,2010,363:1324-1334.

[41] GilmanAL,et al. Phase I study of ch14. 18 with granulocyte-macrophage colonystimulating factor and interleukin-2 in childrenwith neuroblastoma after autologous bone marrow transplantation orstem-cell rescue: a report from the Children's Oncology Group. JClin Oncol,2009,27: 85-91.

[42] Miraldi FD,et al. Diagnostic imaging of human neuroblastomawith radiolabeled antibody. Radiology,1986,161: 413-418.

[43]Yeh SD,et al. Radioimmunodetection of neuroblastoma with iodine-131-3F8: correlation with biopsy, iodine-131-metaiodobenzylguanidine ( MIBG ) and standard diagnosticmodalities. J Nucl Med,1991,32: 769-776.

[44]Cheung NK,et al. 3F8 monoclonal antibody treatment of patientswith stage 4 neuroblastoma: a phase Ⅱ study. Int J Oncol,1998,12: 1299-1306.

[45]Arbit E,et al. Quantitative studies of monoclonal antibodytargeting to disialoganglioside GD2 in human brain tumors. Eur JNucl Med,1995,22: 419-426.

[46]Cheung NK,et al. Anti-G( D2) antibody treatment of minimalresidual stage 4 neuroblastoma diagnosed at more than 1 year ofage. J Clin Oncol,1998,16: 3053-3060.

[47] Cheung NK,et al. Induction of Ab3 and Ab3 antibody wasassociated with long-term survival after anti-G ( D2 ) antibodytherapy of stage 4 neuroblastoma. Clin Cancer Res,2000,6:2653-2660.

[48]Kushner BH,et al. Phase Ⅱ trial of the anti-G( D2) monoclonalantibody 3F8 and granulocyte-macrophage colony-stimulating factorfor neuroblastoma. J Clin Oncol,2001,19: 4189-4194.

[49]Cheung NK,et al. FCGR2A polymorphism is correlated withclinical outcome after immunotherapy of neuroblastoma with anti-GD2 antibody and granulocyte macrophage colony-stimulatingfactor. J Clin Oncol,2006,24: 2885-2890.

[50]Munn DH,et al. Antibody-dependent antitumor cytotoxicity byhuman monocytes cultured with recombinant macrophage colonystimulatingfactor. Induction of efficient antibody-mediatedantitumor cytotoxicity not detected by isotope release assays. J ExpMed,1989,170: 511-526.

[51]Kushner BH,et al. GM-CSF enhances 3F8 monoclonal antibodydependentcellular cytotoxicity against human melanoma andneuroblastoma. Blood,1989,73: 1936-1941.

[52]Weng WK,et al. Two immunoglobulin G fragment C receptorpolymorphisms independently predict response to rituximab inpatients with follicular lymphoma. J Clin Oncol,2003,21: 3940-3947.

[53]Cartron G,et al. Therapeutic activity of humanized anti-CD20monoclonal antibody and polymorphism in IgG Fe receptorFcgammaRlIIa gene. Blood,2002,99: 754-758.

[54]Tax WJ,et al. Role of polymorphic Fe receptor Fe gammaRlIa incytokine release and adverse effects of murine IgG1 anti-CD3 /T cell receptor antibody ( WT31 ) . Transplantation,1997,63:106-112.

[55]Denomme GA,et al. Activation of platelets by sera containingIgG1 heparin-dependent antibodies: an explanation for thepredominance of the Fe gammaRlIa“low responder”( his131 )gene in patients with heparin-induced thrombocytopenia. J LabClin Med,1997,130: 278-284.

[56]Saarinen UM,et al. Eradication of neuroblastoma cells in vitro bymonoclonal antibody and human complement: method for purgingautologous bone marrow. Cancer Res,1985,45: 5969-5975.

[57]Cheung NK,et al. Decay-accelerating factor protects human tumorcells from complement-mediated cytotoxicity in vitro. J Clin Invest,1988,81: 1122-1128.

[58]Chen S,et al. CD59 expressed on a tumor cell surface modulatesdecayaccelarating factor expression and enhances tumor growth in arat model of human neuroblastoma. Cancer Res,2000,60: 3013-3018.

[59]Kushner BH,et al. Absolute requirement of CD11 /CD18 adhesionmolecules,FcRlI and the phosphatidylinositol-linked FcRlII formonoclonal antibody-mediated neutrophil antihuman tumorcytotoxicity. Blood,1992,79: 1484-1490.

[60]Metelitsa LS,et al. Antidisialoganglioside /granulocyte macrophagecolony-stimulating factor fusion protein facilitates neutrophilantibody-dependent cellular cytotoxicity and depends onFcgammaRlI ( CD32 ) and Mac-1 ( CDllb /CD18 ) for enhancedeffector cell adhesion and azurophil granule exocytosis. Blood,2002,99: 4166-4173.

[61]Ross GD. Regulation of the adhesion versus cytotoxic functions ofthe Mac-lICR3 /alpha,beta2-integrin glycoprotein. Crit RevImmunal,2000,20: 197-222.

[62]Diaz de Stahl T,et al. A role for complement in feedbackenhancement of antibody responses by IgG3. J Exp Med,2003,197: 1183-1190.

[63]Handgretinger R,et al. A phase I study of neuroblastoma with theanti-ganglioside GD2 antibody 14. G2a. Cancer ImmunolImmunother,1992,35: 199-204.

[64]Handgretinger R,et al. A phase I study of human /mouse chimericantiganglioside GD2 antibody ch14. 18 in patients withneuroblastoma. Eur J Cancer,1995,31: 261-267.

[65]Simon T,et al. Consolidation treatment with chimeric anti-GD2-antibody ch14. 18 in children older than 1 year with metastaticneuroblastoma. J Clin Oncol,2004,22: 3549-3557.

[66] Ozkaynak MF,et al. Phase I study of chimeric human /murineanti-ganglioside G ( D2 ) monoclonal antibody ( ch14. 18 ) withgranulocyte-macrophage colony-stimulating factor in children withneuroblastoma immediately after hematopoietic stemcelltransplantation: a Children's Cancer Group Study. J Clin Oncol,2000,18: 4077-4085.

[67]Kushner B,et al. Anti-GD2 antibody 3F8 plus granulocytemacrophagecolony stimulating factor ( GM-CSF ) for primaryrefractory neuroblastoma ( NB) in the bone marrow ( BM) . ProcAmerican Soc Clin Oncol,2007,25: 526s.

[68]Armitage JO. Emerging applications of recombinant humangranulocyte-macrophage colony-stimulating factor. Blood,1998,92: 4491-4508.

[69]Charak BS,et al. Granulocyte-macrophage colony-stimulatingfactor-induced antibody-dependent cellular cytotoxicity in bonemarrow macrophages: application in bone marrow transplantation.Blood,1993,81: 3474-3479.

[70]Ragnhammar P,et al. Cytotoxicity of white blood cells activated bygranulocyte-colony-stimulating factor, granulocyte /macrophagecolony-stimulating factor and macrophage-colony-stimulating factoragainst tumor cells in the presence of various monoclonalantibodies. Cancer Immunol Immunother,1994,39: 254-262.

[71]Chachoua A, et al. Monocyte activation following systemicadministration of granulocyte-macrophage colony-stimulating factor.J Immunother Emphasis Tumor Immunol,1994,15: 217-224.

[72]Batova A,et al. The ch14. 18-GM-CSF fusion protein is effectiveat mediating antibody-dependent cellular cytotoxicity andcomplement-dependent cytotoxicity in vitro. Clin Cancer Res,1999,5: 4259-4263.

[73] Tepper Rl,et al. An eosinophil-dependent mechanism for theantitumor effect of interleukin-4. Science,1992,257: 548-551.

[74] Sanderson CJ. Interleukin-5,eosinophils,and disease. Blood,1992,79: 3101-3109.

[75] Cheung NK,et al. Anti-GD2 murine monoclonal antibody 3F8changed the natural history of high risk neuroblastoma. Presentedat the 2nd International Conference on Immunotherapy in PediatricOncology,Houston,2010.

[76] Larson SM,et al. Monoclonal antibodies: basic principles -radioisotope conjugates. In: de Vita VT,et al,eds. BiologicTherapy of Cancer - Principles and Practice. Philadelphia: JBLippincott,2000: 396-412.

[77]Kramer KJ, et al. Pharmacokinetics and acute toxicology ofintraventricular 131Ⅰ-monoclonal antibody targeting disialoganglioside innon-human primates. J Neurooncol,1997,35: 101-111.

[78]Kramer K,et al. Phase I study of targeted radioimmunotherapy forleptomeningeal cancers using intra-Ommaya 131-1-3F8. J ClinOncol,2007,25: 5465-5470.

[79] Modak S,et al. Monoclonal antibody 8H9 targets a novel cellsurface antigen expressed by a wide spectrum of human solidtumors. Cancer Res,2001,61: 4048-4054.

[80]Kramer K,et al. Radioimmunotherapy of metastatic cancer to thecentral nervous system: phase Ⅰ study of intrathecal 131Ⅰ-8H9.American Association for Cancer Research ( presentation) .

[81]Kramer K,et al. Effective intrathecal radioimmunotherapy-basedsalvage regimen for metastatic central nervous system ( CNS )neuroblastoma ( NB) . ISPNO,2008.

[82]Klingebiel T, et al. Metaiodobenzylguanidine ( MIBG ) intreatment of 47 patients with neuroblastoma: results of the Germanneuroblastoma trial. Med Pediatr Oncol,1991,19: 84-88.

[83]Lashford LS, et al. Phase Ⅲ study of iodine 131Ⅰ-metaiodobenzylguanidine in chemoresistant neuroblastoma: aUnited Kingdom Children's Cancer Study Group investigation. JClin Oncol,1992,10: 1889-1896.

[84]Matthay KK, et al. Phase I dose escalation of 131Ⅰ-metaiodobenzylguanidine with autologous bone marrow support inrefractory neuroblastoma. J Clin Oncol,1998,16: 229-236.

[85]Garaventa A,et al. 131Ⅰ-metaiodobenzylguanidine ( 131Ⅰ-MIBG)therapy for residual neuroblastoma: a monoinstitutional experiencewith 43 patients. Br J Cancer,1999,81: 1378-1384.

[86]Kang TI,et al. Targeted radiotherapy with submyeloablative dosesof 131Ⅰ-MIBG is effective for disease palliation in highly refractoryneuroblastoma. J Pediatr Hematol Oncol,2003,25: 769-773.

[87] Howard JP,et al. Tumor response and toxicity with multipleinfusions of high-dose 131Ⅰ-MIBG for refractory neuroblastoma.Pediatr Blood Cancer,2005,44: 232-239.

[88]Messina JA,et al. Evaluation of semi-quantitative scoring systemfor metaiodobenzylguanidine ( MIBG ) scans in patients withrelapsed neuroblastoma. Pediatr Blood Cancer, 2006, 47:865-874.

[89]de Kraker J,et al. Iodine-131Ⅰ-metaiodobenzylguanidine as initialinduction therapy in stage 4 neuroblastoma patients over 1 year ofage. Eur J Cancer,2008,44: 551-556.

[90]Modak S,et al. Transient sialoadenitis: a complication of 131Ⅰ-metaiodobenzylguanidine therapy. Pediatr Blood Cancer,2008,50: 1271-1273.

[91]Garaventa A, et al. Second malignancies in children withneuroblastoma after combined treatment with 131Ⅰ-metaiodobenzylguanidine. Cancer,2003,97: 1332-1338.

[92]Weiss B,et al. Secondary myelodysplastic syndrome and leukemiafollowing 131Ⅰ-metaiodobenzylguanidine therapy for relapsedneuroblastoma. J Pediatr Hematol Oncol,2003,25: 543-547.

[93]Klingebiel T,et al. Treatment of neuroblastoma stage 4 with 131Ⅰ-metaiodobenzylguanidine, high-dose chemotherapy andimmunotherapy. A pilot study. Eur J Cancer,1998,34:1398-1402.

[94]Mastrangelo S,et al. Treatment of advanced neuroblastoma:feasibility and therapeutic potential of a novel approach combining131Ⅰ-MIBG and multiple drug chemotherapy. Br J Cancer,2001,84: 460-464.

[95]Miano M,et al. Megatherapy combining 131Ⅰ-metaiodobenzylguanidineand high-dose chemotherapy with haematopoietic progenitor cell rescuefor neuroblastoma. Bone Marrow Transplant,2001,27: 571-574.

[96]Yanik GA,et al. Pilot study of iodine-131-metaiodobenzylguanidine incombination with myeloablative chemotherapy and autologous stemcellsupport for the treatment of neuroblastoma. J Clin Oncol,2002,20:2142-2149.

[97]McCluskey AG,et al. ( 131Ⅰ) Metaiodobenzylguanidine andtopotecan combination treatment of tumors expressing thenoradrenaline transporter. Clin Cancer Res, 2005, 11:7929-7937.

[98]Matthay KK,et al. Phase Ⅰ dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy andautologous stem-cell transplantation in refractory neuroblastoma: anew approaches to neuroblastoma therapy consortium study. J ClinOncol,2006,24: 500-506.

[99]Linney E. Retinoic acid receptors: transcription factorsmodulating gene regulation,development,and differentiation.Curr Top Dev Bioi,1992,27: 309-350.

[100]Li C,et al. Expression of retinoic acid receptors alpha,beta,and gamma in human neuroblastoma cell lines. Prog Clin BioiRes,1994,385: 221-227.

[101]Thiele CJ,et al. Decreased expression of N-myc precedes retinoicacid-induced morphological differentiation of human neuroblastoma.Nature,1985,313: 404-406.

[102] Thiele CJ,et al. Regulation of N-myc expression is a criticalevent controlling the ability of human neuroblasts to differentiate.Exp Cell Bioi,1988,56: 321-333.

[103] Matsuo T,et al. p27Kip1: a key mediator of retinoic acidinduced growth arrest in the SMS-KCNR human neuroblastomacell line. Oncogene,1998,16: 3337-3343.

[104]Nakamura M,et al. Retinoic acid decreases targeting of p27 fordegradation via an N-myc-dependent decrease in p27phosphorylation and an N-myc-independent decrease in Skp2.Cell Death Differ,2003,10: 230-239.

[105]Abemayor E,et al. Human neuroblastoma cell lines as models forthe in vitro study of neoplastic and neuronal cell differentiation.Environ Health Perspect,1989,80: 3-15.

[106]Kohler JA,et al. A randomized trial of 13-Cis retinoic acid inchildren with advanced neuroblastoma after high-dose therapy. BrJ Cancer,2000,83: 1124-1127.

[107]Vertuani S,et al. Retinoids act as multistep modulators of themajor histocompatibility class Ⅰ presentation pathway andsensitize neuroblastomas to cytotoxic lymphocytes. Cancer Res,63: 8006-8013.

[108]Ponzoni M,et al. Differential effects of N-( 4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosisversus differentiation. Cancer Res,1995,55: 853-861.

[109] Reynolds CP,et al. Retinoicacid-resistant neuroblastoma celllines show altered MYC regulation and high sensitivity tofenretinide. Med Pediatr Oncol,2000,35: 597-602.

[110]Villablanca JG,et al. PhaseⅠtrial of oral fenretinide in childrenwith high-risk solid tumors: a report from the Children's OncologyGroup ( CCG 09709) . J Clin Oncol,2006,24: 3423-3430.

[111]Maurer BJ,et al. Improved oral delivery of N-( 4-hydroxyphenyl)retinamide with a novel LYM-X-SORB organized lipid complex.Clin Cancer Res,2007,13: 3079-3086.

[112] Bernards R. N-myc disrupts protein kinase c-mediated signaltransduction in neuroblastoma. EMBO J,1991,10: 1119-1125.

[113] Akeson R,et al. N-myc down regulates neural cell adhesionmolecule expression in rat neuroblastoma. Mol Cell Bioi,1990,10: 2012-2016.

[114]Yang J,et al. Exploring a new twist on tumor metastasis. CancerRes,2006,66: 4549-4552.

[115]Puisieux A,et al. A twist for survival and cancer progression. BrJ Cancer,2006,94: 13-17.

[116] Valsesia-Wittmann S,et al. Oncogenic cooperation betweenH-Twist and N-Myc overrides failsafe programs in cancer cells.Cancer Cell,2004,6: 625-630.

[117]Niitsu N,et al. Serum nm23-H1 protein as a prognostic factor inaggressive non-Hodgkin lymphoma. Blood,2001,97: 1202-1210.

[118]Godfried MB,et al. The n-myc and c-myc downstream pathwaysinclude the chromosome 17q genes nm23-H1 and nm23-H2.Oncogene,2002,21: 2097-2101.

[119]Florenes VA,et al. Levels of nm23 messenger RNA in metastaticmalignant melanomas: inverse correlation to disease progression.Cancer Res,52: 6088-6091.

[120] Geiger TR,et al. The neurotrophic receptor TrkB in anoikisresistance and metastasis: a perspective. Cancer Res,2005,65:7033-7036.

[121]Hecht M,et al. The neurotrophin receptor TrkB cooperates withc-Met in enhancing neuroblastoma invasiveness. Carcinogenesis,2005,26: 2105-2115.

[122]Stupack DG,et al. Potentiation of neuroblastoma metastasis byloss of caspase-S. Nature,2006,439: 95-99.

[123]Teitz T,et al. Halting neuroblastoma metastasis by controllingintegrin-mediatcd death. Cell Cycle,2006,5: 681-685.

[124]Taichman RS,et al. Use of the stromal cell-derived factor-1 /CXCR4 pathway in prostate cancer metastasis to bone. CancerRes,2002,62: 1832-1837.

[125]Russell HV,et al. CXCR4 expression in neuroblastoma primarytumors is associated with clinical presentation of bone and bonemarrow metastases. J Pediatr Surg,2004,39: 1506-1511.

[126]Geminder H. et al. A possible role for CXCR4 and its ligand,theCXC chemokine stromal cell-derived factor-1,in the developmentof bone marrow metastases in neuroblastoma. J Immunol,2001,167: 4747-4757.

[127]Nevo I,et al. The tumor microenvironment: CXCR4 is associatedwith distinct protein expression patterns in neuroblastoma cells.Immunol Lett,2004,92: 163-169.

[128] Hansford LM,et al. Neuroblastoma cells isolated from bonemarrow metastases contain a naturally enriched tumor-initiatingcell. Cancer Res,2007,67: 11234-11243.

[129]Airoldi I,et al. CXCL12 does not attract CXCR4 + humanmetastatic neuroblastoma cells: clinical implications. Clin CancerRes,2006,12: 77-82.

[130]Devine SM,et al. Rapid mobilization of CD34 + cells followingadministration of the CXCR4 antagonist AMD3100 to patientswith multiple myeloma and non-Hodgkin's lymphoma. J ClinOncol,2004,22: 1095-1102.

[131] Vande BI,et al. Chemokine receptor CCR2 is expressed byhuman multiple myeloma cells and mediates migration to bonemarrow stromal cell-produced monocyte chemotactic proteinsMCP-1,-2 and -3. Br J Cancer,2003,88: 855-862.

[132]Ara T,et al. Mechanisms of invasion and metastasis in humanneuroblastoma. Cancer Metastasis Rev,2006,25: 645-657.

[133]Norris MD,et al. Expression of the gene for multidrug-resistanceassociatedprotein and outcome in patients with neuroblastoma.N Engl J Med,1996,334: 231-238.

[134] Keshelava N,et al. Loss of p53 Junction confers high-levelmultidrug resistance in neuroblastoma cell lines. Cancer Res,2001,61: 6185-6193.

[135] Tweddle DA,et al. The p53 pathway and its inactivation inneuroblastoma. Cancer Lett,2003,197: 93-98.

[136]Scala S, et al. Brain-derived neurotrophic factor protectsneuroblastoma cells from vinblastine toxicity. Cancer Res,1996,56: 3737-3742.

[137]Jaboin J,et al. Brain-derived neurotrophic factor activation ofTrkB protects neuroblastoma cells from chemotherapy-inducedapoptosis via phosphatidylinositol 3'-kinase pathway. CancerRes,2002,62: 6756-6763.

[138]Evans AE,et al. Antitumor activity of CEP-751 ( KT-6587) onhuman neuroblastoma and medulloblastoma xenografts. ClinCancer Res,1999,5: 3594-3602.

[139]Schinkel AH,et al. Mammalian drug efflux transporters of theATP binding cassette ( ABC) family: an overview. Adv DrugDeliv Rev,2003,55: 3-29.

[140] Reid G,et al. Characterization of the transport of nucleosideanalog drugs by the human multidrug resistance proteins MRP4and MRPS. Mol Pharmacol,2003,63: 1094-1103.

[141] Norris MD,et al. Expression of multidrug transporter MRP4 /ABCC4 is a marker of poor prognosis in neuroblastoma andconfers resistance to irinotecan in vitro. Mol Cancer Ther,2005,4: 547-553.

[142]Michalak E, et al. Death squads enlisted by the tumoursuppressor p53. Biochem Biophys Res Commun,2005,331:786-798.

[143]Barak Y,et al. mdm2 expression is induced by wild type p53activity. EMBO J,1993,12: 461-468.

[144]Honda R,et al. Association ofp19 ( ARF) with mdm2 inhibitsubiquitin ligase activity of mdm2 for tumor suppressor p53.EMBO J,1999,18: 22-27.

[145]Lane DP. Cancer p53,guardian of the genome. Nature,1992,358: 15-16.

[146] Carr J,et al. Increased frequency of aberrations in the p53 /MDM2 /p14 ( ARF ) pathway in neuroblastoma cell linesestablished at relapse. Cancer Res,2006,66: 2138-2145.

[147] Yu Q. Restoring p53-mediated apoptosis in cancer cells: newopportunities for cancer therapy. Drug Resist Updat,2006,9:19-25.

[148]Iwahara T,et al. Molecular characterization of ALK: a receptortyrosine kinase expressed specifically in the nervous system.Oncogene,1997,14: 439-449.

[149]Chiarle R,et al. The anaplastic lymphoma kinase in thepathogenesis of cancer. Nat Rev Cancer,2008,8: 11-23.

[150]Lamant L,et al. Expression of the ALK tyrosine kinase gene inneuroblastoma. Am J Pathol,2000,156: 1711-1721.

[151]McDermott U,et al. Genomic alterations of anaplastic lymphomakinase may sensitize tumors to anaplastic lymphoma kinaseinhibitors. Cancer Res,2008,68: 3389-3395.

[152]George RE,et al. Activating mutations in ALK provide atherapeutic target in neuroblastoma. Nature, 2008, 455:975-978.

[153] Janoueix-Lerosey I,et al. Somatic and germline activatingmutations of the ALK kinase receptor in neuroblastoma. Nature,2008,455: 967-970.

[154]Chen Y, et al. Oncogenic mutations of ALK kinase inneuroblastoma. Nature,2008,455: 971-974.

[155] Eng C. Cancer: a ringleader identified. Nature,2008,455:883-884.

[156]Eggert A,et al. High-level expression of angiogenic factors isassociated with advanced tumor stage in human neuroblastomas.Clin Cancer Res,2000,6: 1900-1908.

[157]Ribatti D, et al. Inhibition of neuroblastoma-inducedangiogenesis by fenretinide. Int J Cancer,2001,94: 314-321.

[158]Shusterman S, et al. The angiogenesis inhibitor TNP-470effectively inhibits human neuroblastoma xenograft growth,especially in the setting of subclinical disease. Clin Cancer Res,2001,7: 977-984.

[159]Chesler L, et al. Malignant progression and blockade ofangiogenesis in a murine transgenic model of neuroblastoma.Cancer Res,67: 2007,9435-9442.

[160]Kaicker S,et al. Thalidomide is anti-angiogenic in a xenograftmodel of neuroblastoma. Int J Oncol,2003,23: 1651-1655.

[161]Jouanneau E,et al. Lack of antitumor activity of recombinantendostatin in a human neuroblastoma xenograft model. JNeurooncol,2001,51: . 11-18.

[162]Davidoff AM,et al. Autocrine expression of both endostatin andgreen fluorescent protein provides a synergistic antitumor effect ina murine neuroblastoma model. Cancer Gene Ther,2001,8:537-545.

[163]Kim ES,et al. Distinct response of experimental neuroblastoma tocombination antiangiogenic strategies. J Pediatr Surg,2002,37:518-522.

[164] Kim ES,et al. Potent VEGF blockade causes regression ofcoopted vessels in a model of neuroblastoma. Proc Natl Acad SciUSA,2002,99: 11399-11404.

[165] Bender JL,et al. Phase I trial and pharmacokinetic study ofbevacizumab in pediatric patients with refractory solid tumors: aChildren's Oncology Group Study. J Clin Oncol,2008,26: 399-405.

[166]Castriconi R, et al. Identification of 4Ig-B7-H3 as aneuroblastoma-associated molecule that exerts a protective rolefrom an NK cell-mediated lysis. Proc Natl Acad Sci USA,2004,101: 12640-12645.

[167]Castriconi R,et al. Human NK cell infusions prolong survival ofmetastatic human neuroblastoma-bearing NOD/scid mice. CancerImmunol Immunother,2007,56: 1733-1742.

[168]Kim JJ,et al. Chemokine gene adjuvants can modulate immuneresponses induced by DNA vaccines. J Interferon Cytokine Res,2000,20: 487-498.

[169] Anfossi N,et al. Human NK cell education by inhibitoryreceptors for MHC class I. Immunity,2006,25: 331-442.

[170]Yu J,et al. Hierarchy of the human natural killer cell response isdetermined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J Immunol, 2007, 179:5977-5989.

[171]Ruggeri L, et al. NK cell alloreactivity and allogeneichematopoietic stem cell transplantation. Blood Cells Mol Dis,2008,40: 84-90.

[172] Ruggeri L,et al. Effectiveness of donor natural killer cellalloreactivity in mismatched hematopoietic transplants. Science,2002,295: 2097-2100.

[173]Giebel S, et al. Survival advantage with KIR ligandincompatibility in hematopoietic stem cell transplantation fromunrelated donors. Blood,2003,102: 814-819.

[174]Park JR,et al. Adoptive transfer of chimeric antigen receptor redirectedcytolytic T lymphocyte clones in patients withneuroblastoma. Mol Ther,2007,15: 825-833.

[175]Pule MA,et al. Virus-specific T cells engineered to coexpresstumor-specific receptors: persistence and antitumor activity inindividuals with neuroblastoma. Nat Med, 2008, 14:1264-1270.

[176]Rousseau RF,et al. Local and systemic effects of an allogeneictumor cell vaccine combining transgenic human Iymphotactin withinterleukin-2 in patients with advanced or refractoryneuroblastoma. Blood,2003,101: 1718-1726.

[177]Russell HV, et al. A phase 112 study of autologousneuroblastoma tumor cells genetically modified to secrete IL-2 inpatients with high-risk neuroblastoma. J Immunother,2008,31:812-819.

[178]Fest S,et al. Characterization of GD2 peptide mimotope DNAvaccines effective against spontaneous neuroblastoma metastases.Cancer Res,2006,66: 10567-10575.

[179]Lode HN,et al. Targeted cytokines for cancer immunotherapy.Immunol Res,2000,21: 279-288.

[180]Davis CA,et al. Immunocytokines: amplification of anti-cancerimmunity. Cancer Immunol Immunother,2003,52: 297-308.

[181]Niethammer AG,et al. Targeted interleukin 2 therapy enhancesprotective immunity induced by an autologous oral DNA vaccineagainst murine melanoma. Cancer Res,2001,61: 6178-6184.

[182]Osenga KL,et al. A phase I clinical trial of the hu14. 18-IL2( EMD 273063 ) as a treatment for children with refractory orrecurrent neuroblastoma and melanoma: a study of the Children'sOncology Group. Clin Cancer Res,2006,12: 1750-1759.

[183]Kushner BH,et al. Neuroblastoma from genetic profiles toclinical challenge. N Engl J Med,2005,353: 2215-2217.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈