首页 理论教育 循环和播散肿瘤细胞研究中的关键问题

循环和播散肿瘤细胞研究中的关键问题

时间:2023-04-24 理论教育 版权反馈
【摘要】:然而,敏感的免疫细胞化学和分子检测,现在可以特异性检测到甚至是单细胞阶段的“隐性”转移肿瘤细胞。不同的临床研究提供的证据表明乳腺癌、前列腺癌、肺癌和胃肠道肿瘤患者在最初肿瘤切除时检测到播散性肿瘤细胞 与术后转移复发相关[7]。在肿瘤患者的血液循环细胞的DNA中存在肿瘤相关特异性畸变,出现这种DNA也将反映血液和骨髓中存在DTCs[16]。

◎Klaus Pantel,Harriet Wikman,Catherine Alix-Panabieres,Katharina Effenberger,Sabine Riethdorf

肿瘤细胞的早期转移即使通过高分辨率成像技术通常也难以发现,因而阻止了有效的早期干预。然而,敏感的免疫细胞化学和分子检测,现在可以特异性检测到甚至是单细胞阶段的“隐性”转移肿瘤细胞。这些技术为跟踪转移级联的第一个关键步骤——全身肿瘤细胞血液和骨髓(bone marrow,BM)转移提供了可能性。

在大肠癌中,约50%的患者接受根治性切除术后(R0)5年内死于转移性疾病。即使淋巴结阴性(N0)的患者,复发率也达30%[1,2]。肺癌预后更差,有60%R0和40%N0患者死于转移性疾病[3]。而乳腺癌和前列腺癌整体存活率较高(5年80%~90%,10年70%~80%),淋巴结阴性的患者仍有相当一部分复发(5~10年复发率分别为25%~30%,15%~50%),往往发生在原发肿瘤切除多年后(>10年)[4-6]

不同的临床研究提供的证据表明乳腺癌、前列腺癌、肺癌和胃肠道肿瘤患者在最初肿瘤切除时检测到播散性肿瘤细胞(disseminated tumor cells,DTCs) 与术后转移复发相关[7]。这些工作为国际肿瘤分期系统引进DTCs做了铺垫[8,9]。2007年,DTCs和循环肿瘤细胞(circulating tumor cells,CTCs)首次在美国临床肿瘤学会(ASCO)推荐肿瘤标记中被提及[10]

8.2.1 检测方法:潜在挑战和限制

检测肿瘤患者外周血中CTCs拥有巨大潜力,但技术上仍有挑战。CTCs的识别和特征描述需要极为敏感和特异的分析方法,需要联合包括密度梯度离心、肿瘤相关抗原抗体(阳性分选)或常见白细胞抗原CD45抗体(阴性分选)的免疫磁性分选,以及过滤等先期富集过程。阳性分选通常由上皮细胞黏附分子( epithelial cell adhesion molecule, Ep CAM)抗体完成,随后CTCs免疫检测由细胞角蛋白(cytokeratins,CK)抗体完成[11]

目前以Ep CAM/CK为基础的技术中,已经获得FDA批准的Cell Search系统在过去5年已经获得广泛关注[12]。最近,一个称为“CTC芯片”的微流体新平台问世,它是由抗Ep CAM抗体涂层微黑子(microspots)阵列组成。患者CTCs检出率高( >95%),CTC检出数多,尤其是在没有明显转移的患者,提示该检验方法的特异性值得进一步研究[13]。此外,所有的以Ep CAM为基础的富集系统面临的问题是Ep CAM可以在播散性肿瘤细胞上皮-间质转化(EMT)过程中下调。最近的研究表明,这种转化尤其可能影响肿瘤细胞干细胞样属性[14]

除了免疫细胞学检测方法,另一种替代技术称为上皮免疫斑点(epithelial immunospot,EPISPOT)被应用于CTC分析[11]。这种检测技术使用酶联免疫斑点技术检测培养48小时CTCs分泌的特异性标记蛋白。由于细胞凋亡不能分泌足够量的标记蛋白,因此观察免疫斑点是可行的检测CTC指标[15]

基于反转录聚合酶链反应(RT-PCR)的检测技术是针对特异m RNA检测使用最广泛的免疫检测方法。许多目标转录子(例如CK18、CK19、CK20、黏蛋白1、癌胚抗原)在正常血液和骨髓细胞低水平表达[11],需要应用结合经验证的临界值定量RT-PCR检测来克服这个问题。此外,CTCs和DTCS中靶基因的转录可能被下调(例如上皮间质转化[14]),这提示多标记RT-PCR检测方法似更有优势。

原则上,检测肿瘤特异性DNA突变是最特异性检测CTCs的方法,然而,实体瘤具有显著遗传异质性造成难点。在肿瘤患者的血液循环细胞的DNA中存在肿瘤相关特异性畸变,出现这种DNA也将反映血液和骨髓中存在DTCs[16]

8.2.2 DTC/CTC检测的临床意义

(1) 骨髓中DTC的临床意义

已报道骨髓(BM)中DTCs与多种肿瘤的转移复发显著相关,提示显性转移的创始细胞可能存在于DTCs中。

许多已发表的研究探索乳腺癌患者骨髓中DTCs的存在及其临床意义[11,17-19]。在这些研究中,所选患者队列的大小和应用的检测方法明显不同(表8-1)。由于所采用的方法和患者的数量不同,不同的研究有关DTCs的临床意义得出了不同的结论(表8-1)。然而,Braun等[17]发表的一项包括4703例乳腺癌患者的荟萃分析。在这项汇总分析中,骨髓DTCs的存在不仅预示着骨转移的发生,也预示着发生其他器官转移的可能[17]

表8-1 乳腺癌患者中DTC的检测

续表

注: 只列出入组患者数100例以上的研究。

ICC: 免疫细胞化学; RT-PCR:反转录PCR; MAM: 乳球蛋白; EMA: 上皮膜抗原; CEA: 癌胚抗原; PSE: 前列腺特异性Ets因子; PIP: 催乳素诱导蛋白; ER: 雌激素受体; PR: 孕激素受体; LN: 淋巴结; G: 组织学分级; TS: 肿瘤大小/分期; NS: 无显著差异; ND: 不确定; DFS:无瘤生存; OS: 总生存; DM/LM: 远处/l淋巴结转移; DMSF: 无远处转移生存; LRSF: 无局部复发生存; DDFS: 无远处疾病生存; BCSS: 乳腺癌特异性生存; RFS: 无复发生存,TRD: 肿瘤相关死亡。

DTCs除了在最初诊断和手术时存在外,还发现可以逃脱化疗和激素治疗[20-23],并可在术后多年持续存在于BM中。这种持久存在也与晚期转移复发的风险增加相关[24-29]。例如,在高风险的乳腺癌患者( >3个腋窝淋巴结肿大或皮肤淋巴管广泛受累),治疗后肿瘤细胞的存在与极差的预后相关[20]

在大肠癌中,迄今已有4项研究报道骨髓DTCs与复发率增加[30,31]或总生存(OS)降低[32,33]之间呈正相关。相比之下,另外3项较小病例组研究没有检测到预后因素和DTCs之间的任何关联[34-36]。由Flatmark等[37]所做的一项最大宗研究,包括275例肿瘤患者和206例非肿瘤患者,但没有临床随访。用RT-PCR方法分析作为标记转录的CK20 m RNA,两组均显示与生存无关联[38,39],而在4组中发现CK20转录和较差的OS有关联[40-43]。然而,两个阴性报道只在有转移的患者进行研究。综上所述,大肠癌患者DTC的临床意义仍然有争议(表8-2)。

表8-2 结直肠癌患者的DTC检测

注:只列入组病例数100例以上的研究。

CA19-9: Lewis血液抗原组;17-1A: 膜抗原; CD54-0: 膜抗原; GCC: 鸟苷酸环化酶(guanylylcyclase); CEA: 癌胚抗原; LN: 淋巴结; NA:无相关信息; NS: 无显著意义; ND: 不明确; DFS: 无疾病生存; OS:总生存; RR: 复发率。

在非小细胞肺癌(NSCLC),多个应用抗CK18的CK2单克隆抗体或不同的抗细胞角蛋白抗体进行免疫细胞化学研究探索DTCs与预后的相互关系[44]。在不同研究中,CK阳性细胞比例为22% ~60%。有趣的是,不仅在肺癌患者[45-47]、而且乳腺癌和食管癌患者,其肋骨或胸骨BM比髂骨BM中更常发现DTC[48,49]。无论骨髓穿刺位点,许多研究表明 BM 中 DTCs 和较差的临床结果之间有相关性[45-47,50-54]。迄今为止,包括196例患者的大规模研究没有找到其相互关系,可能是由于随访时间太短(中位数8个月)所致[55]。利用RT-PCR技术为基础的检测,随访数据库迄今仍很小。Sienel等人分析了50例小样本无明显远处转移的患者[56],认为MAGE-A的存在与不良预后有关。总之,虽然有一些证据表明DTC可能是不良结果,仍然需要进行更大的标准化研究来确认DTCs对肺癌的预后价值。

在前列腺癌,BM是最好发的转移部位。在过去10年中,有几个研究小组着重于前列腺DTC的研究。然而,多数研究纳入患者的数量和(或)随访信息相对较少,而且有关的激素治疗对预后的影响数据也较少或缺乏。使用免疫组化方法,DTC检出率为10%~90%[28,57-60]。已发现DTC与原发瘤组织分化等临床已确立的风险因素之间有关联[61,62]。如有两项研究已经证明早期前列腺特异抗原(PSA)复发与DTC检测之间的关系[60,63]。尽管DTC阳性骨髓的状态与转移分级和转移风险增加有关,Berg等人[62]在2007年对266例患者研究中没有发现DTC检测与生存有关联。最近,Kollermann等[60]研究了193例临床局限的前列腺癌并接受了新辅助内分泌治疗和前列腺癌根治术的患者,有86例(44.6%)患者预后与骨髓DTCs相关,其中位随访时间为44个月。也有研究用RT-PCR技术检测DTC,大多以扩增PSA或MAGE特异性c DNA作为标记,其检出率也明显增加[44]。DTC的检测与PSA血清水平相关,已报道一些与预后相关的证据[58,64]。总之,有一些证据表明,在前列腺癌患者骨髓中DTCs检测可能是一个预后指标,但需要更大的多中心研究,以及后续对已建立风险参数的诺模图测试,将DTC检测引入前列腺癌患者未来的临床管理。

更多的研究已在其他上皮性实体肿瘤患者开展,如胃癌[65]、食管癌[27,66]、胰腺癌[67,68]、卵巢癌以及头颈部癌[22,69-75]

(2) 血液中CTCs的意义

虽然反复骨髓采样检测和监测微小残留灶是白血病或淋巴瘤患者的常规方式,但这似乎难以作为实体瘤患者的临床常规。外周血系列分析更能为患者接受,很多研究小组目前正在评估外周血CTCs的临床应用价值。大部分工作仍是在乳腺癌患者中进行(表8-3)。所有比较同一时间点BM和外周血检测的研究表明,同一患者BM穿刺阳性率比血液标本阳性率高[21,76,77],这是由于骨髓可能为DTC的归巢和生存提供条件,从而有利于其在BM中蓄积,而血液分析仅仅是肿瘤细胞播散的一个“快照”(snapshot)。

虽然CTCs的临床意义仍在积极研究中,最近发表的关于在乳腺癌和直肠癌患者不同分期中进行CTC检测和转移复发关系的研究结果令人鼓舞,该研究采用免疫组化和RT-PCR为基础的检测方法及各种标记来检测外周血CTCs (表8-3、表8-4)。到目前为止,很少有研究直接比较同一患者的骨髓和血液标本[21,76-78]。Wiedswang等[76]发表的最大一项341例Ⅰ~Ⅳ期乳腺癌患者的研究表明,骨髓DTC检测比M0期患者CTC检测有更好的预后意义。而Bidard等[78]报道CTC计数具有更好的临床意义,但他们只分析了37例转移性(M1期)乳腺癌患者。目前,这些研究结果并不支持骨髓DTCs与血液CTC相互交换作为乳腺癌的预后因子,但未来较大规模应用改进的CTC检测技术(如前所述)的研究可能有助于澄清这一重要问题。

表8-3 乳腺癌患者CTC的检测

续表

注: 只列入病例数100例以上的研究。CTC为外周血造血干细胞单采产品。全身治疗期间的不同时间点筛选CTC(0,3~5,6~8,9~14,15~20周),比较每次抽血时<5CTC与≥5CTC者有无显著差异。

表8-4 结直肠癌病人中CTC的检测

注: 仅列入100例以上患者的研究。

RR: 复发率;PFS: 无进展生存;OS: 总生存;POB: 门静脉血;PB: 外周血;MB: 为肿瘤供血的肠系膜静脉血;MV:肠系膜静脉。

许多研究小组目前正在评估对转移性乳腺癌患者进行CTC检测及治疗监测的临床价值,并提供了重要的预后信息分析[79,80],似乎在评价治疗反应方面比传统的影像学方法更优越[13,81]。由西南肿瘤小组研究的一项随机试验SWOGS0500(www.cancer.gov/clinicaltrials/SWOG-S0500)正在应用上述研究结果进行临床试验。这项试验的目的是确定经过3周一线化疗后CTC水平升高患者在下一疗程则改为应用另一种替代化疗方案,而不是等待疾病进展临床证据的出现,是否改善总生存和无进展生存。

DTC/CTC技术的真正挑战是监测无明显转移迹象患者体内的微小残留肿瘤。Pierga等人[82]在一项Ⅱ期临床试验中监测118例患者初始全身化疗前后(REMAGUS02)CTC的数量。在随访18个月后他们发现CTC是影响无转移生存的独立预后因素。有趣的是,他们没有发现与原发肿瘤化疗反应率的关联,而这通常是用来作为治疗反应的指标。Pachmann等人[83]报道,在辅助化疗结束后CTC数量10倍增加与无复发生存率显著降低相关。然而,他们比其他小组多检测了2~3log单位数量的CTC,因此他们检测结果的特异性需要进一步讨论[83]

对另外两项应用Cell Search技术的德国临床试验(即重点在于初始全身化疗加或不加曲妥珠单抗) 的GEPARQuattro 试 验 [www. germanbreastgroup. de/geparquattro]和着重于辅助化疗的SUCCESS试验[www. success-studie.de]的随访分析目前仍在进行中,将揭示所观察到的CTC率下降[84,85]是否与肿瘤患者的生存率提高相关。GEPARQuattro试验中,在22%的初始全身化疗前患者体内检测到CTCs,化疗后这一比例下降到11%[84]。SUCCESS试验中,共纳入1767例患者;10%患者在辅助化疗前、7%在完成治疗后可发现CTCs存在[85]

因为大多数DTCs和CTCs处于非循环状态,化疗可能对这些细胞的影响相当有限。因此,除了化疗和放疗外,靶向治疗已开辟了临床肿瘤学的新纪元[86]。但是,对接受靶向治疗肿瘤患者的选择需要识别肿瘤细胞中有疗效的靶点。而HER-2原癌基因是目前主要的全身治疗生物靶点,众多临床试验已证实应用人源单克隆抗体(曲妥珠单抗)对乳腺癌有效[87]。目前,所有患者只通过原发肿瘤的分析进行曲妥珠单抗分层研究。HER-2阳性的DTCs/CTCs检测可以将疾病临床进程中的HER-2状态进行实时评估。一些研究小组报道,HER-2阳性的DTCs/CTCs检测和相应的原发肿瘤HER-2评分之间有显著差异[88-91],表明容易被常规原发肿瘤检测遗漏的HER-2过度表达亚克隆肿瘤细胞可能具有播散潜能。HER-2阳性DTCs和CTCs检测与乳腺癌和食管癌的临床预后差相关[88,89,92]; HER-2基因扩增可在肿瘤进展中发生[93,94]。因此,DTCs和CTCs的HER-2状态评估可为肿瘤患者的临床治疗提供重要信息。

8.2.3 DTCs/CTCs的生物学

DTCs和CTCs的进一步分子分析可能有助于揭示播散肿瘤细胞的生物学特性,特别是揭开“肿瘤休眠”(即原发瘤切除后到转移复发之间的潜伏期,在乳腺癌可长达10年以上)这一令人费解的现象,以及识别转移创始细胞(干细胞)是非常重要的。

(1) 肿瘤休眠

乳腺癌的转移复发甚至可以在原发肿瘤诊断和切除10多年以后发生[95]。这一潜伏期称为肿瘤休眠(cancer dormancy),其特点是在最终出现明显转移前微小残留病灶可存在多年[24]。Jonathan Uhr研究小组已证明,可在无明显转移的乳腺癌患者原发肿瘤被确诊22 年后检测到CTCs[96]。因此,不能排除许多“治愈”肿瘤患者可能隐藏休眠肿瘤细胞。

可通过改变DTCs(例如,调控细胞增殖和凋亡基因的更多突变或表观遗传修饰)和干扰周围微环境(例如,生长因子和血管生成因子的释放)调节休眠肿瘤细胞的稳定状态[7]。Koebel等人[97]最近指出在骨肉瘤小鼠模型中免疫监视对肿瘤休眠的重要性;Mahnke等报道骨髓微环境具有一些对于DTC和免疫T细胞记忆有重要意义的特征[98]。此外,Galon和同事证明T细胞活化和结肠癌患者的生存之间有明显的正相关,与原发瘤大小和淋巴结状态无关[99]。然而,作为一个潜在的重要宿主组成成分,免疫系统控制转移进程的作用仍存在争论。巨噬细胞的某些亚类甚至可以通过促进血管生成及细胞外基质的降解和重构来促进转移扩散[100]

诱发血管生成的能力被认为是逃脱肿瘤休眠且随后造成转移的重要原因[101]。虽然这种假设已被大量实验研究支持,关于DTCs/ CTCs的血管生成因子表达的信息却很少。只有最近发表的一项研究证明,转移性乳腺癌患者中,在CTCs存在频繁的VEGF表达[102]。除了血管生成,其他微环境的改变也可能影响DTCs和微转移。已证明在炎症和伤口愈合的过程中,过多的细胞因子被释放,部分因子可诱发迁移和上皮肿瘤细胞的生长[103]。有趣的是,伤口愈合特异性基因表达标签可以预测乳腺癌患者的转移复发[104]。因此,不能排除,有微小残留病灶的肿瘤患者发生意外骨折可能有助于逃脱休眠状态。

(2) 转移性干细胞

在过去5年中,肿瘤干细胞领域得到了高度重视,生物医学界正在探索新的潜在干细胞标记用于评估所有类型的实体肿瘤[105,106]。关于转移,有假设认为肿瘤干细胞可以从原发瘤播散到远处。原发瘤干细胞具有与乳腺癌转移复发相关的表达谱这一事实支持这种假设[107]。此外,一个新的乳腺癌干细胞标记(ALDH1)的表达与临床疗效差相关,即ALDH1阳性细胞在小鼠体内能够形成转移[108]。最近, Robert Weinberg小组研究表明,肿瘤干细胞可能有发生上皮间质转化(EMT)的特殊能力[14],从而增加其运动和侵袭能力,使其能够在远处器官和血液中生存。

也有一些证据表明,肉眼转移的创始细胞(即转移性干细胞)可能是肿瘤患者体内通过目前的方法检测出的DTCs/CTCs(图8-4)。其依据:①骨髓中存在的DTCs与转移复发显著相关[17];②大多数DTCs/CTCs是非增殖性(如Ki-67阴性)和化疗耐受的,这些与肿瘤干细胞特征相似[21,109,110];③DTCs/CTCs的部分亚类具有乳腺癌干细胞表型(如CD44+CD24-低表达,CK19+MUC1-,Ep CAM+)[15,111-113]。现在需要使用适当的异种移植小鼠模型进行功能研究来证明DTCs/CTCs的哪种亚类是显性转移的初始细胞。

图8-4 转移进展的干细胞模型

注: 原发瘤释放循环肿瘤细胞进入血液循环,这些细胞回归到继发器官(如骨髓)。在继发器官,这些带有干细胞特征的播散肿瘤细胞可以存活并产生前体细胞,最终在分化状态停止生长,这些细胞会形成转移灶。继发器官也许会为肿瘤细胞提供特殊的微环境,这个微环境中的一些因子会影响细胞的自我更新、增殖或分化的能力。据推断,在骨髓中,造血干细胞微壁龛有利于干细胞样播散肿瘤细胞的生长。

未来的研究将揭示DTCs是否可以使用与正常干细胞相同的骨髓壁龛[114]在肿瘤患者体内存在多年[24]。在各种上皮性肿瘤患者的骨髓中都可以发现DTCs,包括乳腺癌、前列腺癌、肺癌和结肠癌[11,17,115]。虽然DTCs也可能同时存在于其他器官中。但是,可以预见,骨髓可能作为DTC的储存场所,从那里它们可能会循环到其他可能有更好生长条件的远处器官,如肝或肺。已观察到的乳腺癌患者骨髓中的DTCs和局部复发的关系,说明这些细胞可能循环回到肿瘤原发部位[116]。至关重要的是要建立一个能够验证这些挑战性和临床相关的假设。如果骨髓是DTCs的特定储存场所,针对骨髓肿瘤的药物(例如,针对RANK配体的双膦酸盐或抗体)可能足以防止转移,甚至局限性复发。

8.2.4 转移播散的分子决定因素

造血干细胞可以是假阳性细胞来源,但由大队列非肿瘤对照患者分析表明,骨髓和血液样本细胞CK阳性细胞大部分是上皮来源[117]。最重要的问题是这些CK阳性细胞是否确实是肿瘤细胞? 对单个DTCs和CTCs进行全基因组扩增和比较基因组杂交分析(CGH)可以回答这个问题[118-121]。所有的CK阳性细胞似乎都具有遗传异常,这些清楚地表明其是肿瘤细胞。然而,乳腺癌和其他实体肿瘤(如食管癌[92])患者的DTCs通常并非总是具有与原发瘤相同的遗传变化特征[121]。从Klein发表的这些令人惊讶的发现,可以认为DTCs可早期从原发瘤播散并开始了一个独立的遗传进程[11]。然而,单个免疫染色DTC或CTC的全基因组扩增是一个非常具有挑战性的技术,不能进行任何的重复实验。理想的是某个小组在过去10多年发表的令人兴奋的数据,可以被其他实验室通过使用标准化方案重复出来。Brandt小组最近应用不同技术(如特异基因组区域的杂合子缺失分析),发现早期前列腺癌患者CTCs的遗传学异常与个别小区域的原发瘤遗传变异相同[122],这表明在原发瘤阶段转移性亚克隆就已经存在[123]。这些亚克隆在如乳腺癌等其他实体瘤可能也存在,但很容易因原发肿瘤少量切片的常规分析而没有被检测到。

除了直接分析DTCs和(或)CTCs,与DTCs或CTCs相关的原发瘤遗传谱的分析也可为研究肿瘤患者微转移的潜在分子基础提供独特信息,这是欧洲DISMAL联盟的主要目标之一(www.dismal-project.edu)。选择早期无淋巴结转移(N0期)和无明显转移(M0)的早期肿瘤患者,两组患者(DTC和CTC阳性或阴性)的其他指标如年龄、肿瘤分期或分化程度等都匹配。最好是来自新鲜肿瘤组织样本的分析。为了避免所有肿瘤组织中均存在正常组织的污染,应用激光显微切割技术获取肿瘤细胞组织,并提取DNA和RNA。抽提的DNA应用覆盖全基因组的微阵列进行比较基因组杂交(CGH-array)技术分析。由这种微阵列研究得到的非常复杂数据需要强有力的生物信息学分析来显示与DTC和(或)CTC存在相关的基因标签。筛选出来的候选基因需要进一步验证,可通过应用包括来自已知DTC和(或)CTC肿瘤患者的数百例肿瘤样本的组织微阵列检测来快速完成。这种策略已被成功地应用于NSCL患者肿瘤样本,并发现4q缺失与DTC的检出密切相关,提示在该染色体区域存在转移抑制基因[124]

8.2.5 今后的研究方向

DTCs已在所有实体肿瘤患者骨髓中被发现,表明骨髓可能是接受血源性DTCs的首选储存地。目前正在研究DTCs是否以骨髓这样微环境作为壁龛,在播散到其他器官之前多年处于休眠状态。了解这一休眠阶段和促使DTCs恢复生长活性的条件,以及鉴定转移灶形成的起始细胞(转移干细胞)是早期肿瘤细胞播散基础研究最重要和最具挑战性的领域。

连续外周血监测,尤其是对接受全身治疗的肿瘤患者,微小残留病灶实时监控应该比反复骨髓穿刺更容易接受。虽然CTC对转移性乳腺癌、大肠癌、前列腺癌的预后意义可靠,但研究CTCs对原发癌患者的影响仍在进行。化疗后复发高风险患者的识别具有较重要的临床意义。近来,乳腺癌患者在全身性或辅助化疗过程中监测CTCs获得了令人鼓舞的结果。总之,DTCs/CTCs有可能成为实时监测肿瘤病人全身辅助治疗疗效的重要标记,这些细胞的表型和分子特性将有助于更多的“量身定做”和个性化的抗转移治疗。

(张晓飞 译,钦伦秀 审校)

参考文献

[1] Iddings D,et al. The biologic significance of micrometastaticdisease and sentinel lymph node technology on colorectal cancer.J Surg Oncol,2007,96: 671-677.

[2]Bilchik AJ,et al. Prognostic impact of micrometastases in coloncancer: interim results of a prospective multicenter trial. AnnSurg,2007,246: 568-575.

[3]Tonato M. Consensus conference on medical treatment of non-smallcell lung cancer: adjuvant treatment. Lung Cancer,2002,38( Suppl 3) : S37-42.

[4] Swindle PW,et al. Markers and meaning of primary treatmentfailure. Ural Cliri North Am,2003,30: 377-401.

[5]Gronau E,et al. Prostate cancer relapse after therapy with curativeintention: a diagnostic and therapeutic dilemma. Oncologiy,2005,28: 361-366.

[6]Lang JE,et al. Significance of micrometastasis in bone marrow andblood of operable breast cancer patients: research tool or clinicalapplication? Expert Rev Anticancer Ther,2007,7: 1463-1472.

[7]Aguirre-Ghiso JA. Models,mechanisms and clinical evidence forcancer dormancy. Nat Rev Cancer,2007,7: 834-846.

[8] Hermanek P,et al. Classification of isolated tumor cells andmicrometastasis. Cancer,1999,86: 2668-2673.

[9] Singletary SE,et al. Classification of isolated tumor cells:clarification of the 6th edition of the American Joint Committee onCancer Staging Manual. Cancer,2003,98: 2740-2741.

[10]Harris L,et al. American Society of Clinical Oncology 2007update of recommen-dations for the use of tumor markers in breastcancer. J Clin Oncol,2007,25: 5287-5312.

[11]Pantel K, et al. Detection, clinical relevance and specificbiological properties of disseminating tumour cells. Nat RevCancer,2008,8: 329-340.

[12] Riethdorf S,et al. Detection of circulating tumor cells inperipheral blood of patients with metastatic breast cancer: avalidation study of the Cell Search System. Clin Cancer Res,2007,13: 920-928.

[13]Nagrath S,et al. Isolation of rare circulating tumour cells in cancerpatients by microchip technology. Nature, 2007, 450:1235-1239.

[14]Mani SA,et al. The epithelial-mesenchymal transition generatescells with properties of stem cells. Cell,2008,133: 704-715.

[15]Alix-Panabieres C,et al. Detection and characterization of putativemetastatic precursor cells in cancer patients. Clin Chem,2007,53: 537-539.

[16]Schwarzenbach H,et al. Detection of tumor-specific DNA in bloodand bone marrow plasma from patients with prostate cancer. Int JCancer,2007,120: 1465-1471.

[17]Braun S,et al. A pooled analysis of bone marrow micrometastasisin breast cancer. N Engl J Med,2005,353: 793-802.

[18]Slade MJ,et al. The clinical significance of disseminated tumorcells in breast cancer. Nat Clin Pract Oncol,2007,4: 30-41.

[19]Vincent-Salomon A,et al. Bone marrow micrometastasis in breastcancer: review of detection methods,prognostic impact andbiological issues. J Clin Pathol,2008,61: 570-576.

[20]Braun S,et al. Lack of effect of adjuvant chemotherapy on theelimination of single dormant tumor cells in bone marrow of highriskbreast cancer patients. J Clin Oncol,2000,18: 80-86.

[21] Muller V,et al. Circulating tumor cells in breast cancer:correlation to bone marrow micrometastases, heterogeneousresponse to systemic therapy and low proliferative activity. ClinCancer Res,2005,11: 3678-3685.

[22]Wimberger P,et al. Influence of platinum-based chemotherapy ondisseminated tumor cells in blood and bone marrow of patientswith ovarian cancer. Gynecol Oncol,2007,107: 331-338.

[23]Kollermann MW,et al. Supersensitive PSA-monitored neoadjuvanthormone treatment of clinically localized prostate cancer: effectson positive margins,tumor detection and epithelial cells in bonemarrow. Eur Ural,1998,34: 318-324.

[24]Janni W,et al. The persistence of isolated tumor cells in bonemarrow from patients with breast carcinoma predicts an increasedrisk for recurrence. Cancer,2005,103: 884-891.

[25]Slade MJ,et al. Persistence of bone marrow micrometastases inpatients receiving adjuvant therapy for breast cancer: results at 4years. Int J Cancer,2005,114: 94-100.

[26]Wiedswang G,et al. Isolated tumor cells in bone marrow threeyears after diagnosis in disease-free breast cancer patients predictunfavorable clinical outcome. Clin Cancer Res,2004,10: 5342-5348.

[27]Thorban S,et al. Immunocytochemical detection of disseminatedtumor cells in the bone marrow of patients with esophagealcarcinoma. J Natl Cancer lnst,1996,88: 1222-1227.

[28]Weckermann D,et al. Does the immunocytochemical detection ofepithelial cells in bone marrow ( micrometastasis) influence thetime to biochemical relapse after radical prostatectomy? Ural Res,1999,27: 285-290.

[29]Naume B,et al. The prognostic value of isolated tumor cells inbone marrow in breast cancer patients: evaluation of morphologicalcategories and the number of clinically significant cells. ClinCancer Res,2004,10: 3091-3097.

[30] Lindemann F,et al. Prognostic significance of micrometastatictumour cells in bone marrow of colorectal cancer patients. Lancet,1992,340: 685-689.

[31] O'Sullivan GC,et al. Micrometastases: marker of metastaticpotential or evidence of residual disease? Gut,1997,40:512-515.

[32] Broil R,et al. Tumor cell dissemination in bone marrow andperitoneal cavity. An immunocytochemical study of patients withstomach or colorectal carcinoma. Langenbecks Arch Chir,1996,381: 51-58.

[33]Leinung S,et al. Detection of cytokeratin-positive cells in bonemarrow in breast cancer and colorectal carcinoma in comparisonwith other factors of prognosis. J Hematother Stem Cell Res,2000,9: 905-911.

[34] Cohen AM,et al. In vitro detection of occult bone marrowmetastases in patients with colorectal cancer hepatic metastases.Dis Colon Rectum,1998,41: 1112-1115.

[35]Schott A,et al. Isolated tumor cells are frequently detectable inthe peritoneal cavity of gastric and colorectal cancer patients andserve as a new prognostic marker. Ann Surg,1998,227:372-379.

[36]Schoppmeyer K,et al. Tumor cell dissemination in colon cancerdoes not predict extrahepatic recurrence in patients undergoingsurgery for hepatic metastases. Oneal Rep,2006,15: 449-454.

[37]Flatmark K,et al. Immunomagnetic detection of micrometastaticcells in bone marrow of colorectal cancer patients. Clin CancerRes,2002,8: 444-449.

[38]Vlems FA et al. Detection of disseminated tumour cells in bloodand bone marrow samples of patients undergoing hepatic resectionfor metastasis of colorectal cancer. Br J Surg,2003,90:989-995.

[39] Koch M,et al. Prognostic impact of hematogenous tumor celldissemination in patients with stage Ⅱ colorectal cancer. Int JCancer,2006,118: 3072-3077.

[40] Vogel I,et al. Multivariate analysis reveals RT-PCR detectedtumour cells in the blood and /or bone marrow of patients withcolorectal carcinoma as an independent prognostic factor. AnnOneal,2000,11 ( Suppl 4) : 43: 2000.

[41]Soeth E,et al. The detection of disseminated tumor cells in bonemarrow from colorectal-cancer patients by a cytokeratin-20-specificnested reverse-transcriptase-polymerase-chain reaction is related tothe stage of disease. Int J Cance,1996,69: 278-282.

[42]Soeth E,et al. Comparative analysis of bone marrow and venousblood isolates from gastrointestinal cancer patients for the detectionof disseminated tumor cells using reverse transcription PCR.Cancer Res,1997,57: 3106-3110.

[43]Koch M,et al. Detection of hematogenous tumor cell disseminationpredicts tumor relapse in patients undergoing surgical resection ofcolorectal liver metastases. Ann Surg,2005,241: 199-205.

[44]Riethdorf S,et al. Review: biological relevance of disseminatedtumor cells in cancer patients. Int J Cancer,2008,123:1991-2006.

[45]Pantel K,et al. Frequency and prognostic significance of isolatedtumour cells in bone marrow of patients with non-small cell lungcancer without overt metastases. Lancet,1996,347: 649-653.

[46] Passlick B,et al. Isolated tumor cells in bone marrow predictreduced survival in node-negative non-small cell lung cancer. AnnThome Surg,1999,68: 2053-2058.

[47]Sugio K,et al. Micrometastasis in the bone marrow of patients withlung cancer associated with a reduced expression of E-cadherinand beta-catenin: risk assessment by immunohistochemistry.Surgery,2002,131: S226-231.

[48]Relihan N,et al. Combined sentinel lymph node mapping andbone marrow micrometastatic analysis for improved staging inbreast cancer. Lancet,1999,354: 129-130.

[49]Mattioli S,et al. Iliac crest biopsy versus rib segment resection forthe detection of bone marrow isolated tumor cells from lung andesophageal cancer. EurJ Cardiothorac Surg,2001,19: 576-579.

[50] Pantel K,et al. Immunocytological detection of bone marrowmicrometastasis in operable non-small cell lung cancer. CancerRes,1993,53: 1027-1031.

[51]Cote RJ,et al. Detection of occult bone marrow micrometastases inpatients with operable lung carcinoma. Ann Surg,1995,222:415-423.

[52]Ohgami A,et al. Micrometastatic tumor cells in the bone marrowof patients with non-small cell lung cancer. Ann Tharac Surg,1997,64: 363-367.

[53]Kasirnir-Bauer S,et al. Evaluation of different markers in nonsmallcell lung cancer: prognostic value of clinical staging,tumour cell detection and tumour marker analysis for tumourprogression and overall survival. Oneal Rep, 2003, 10:475-482.

[54]Yasumoto K,et al. Prognostic value of cytokeratin-positive cells inthe bone marrow and lymph nodes of patients with resectednonsmall cell lung cancer: a multicenter prospective study. AnnThorac Surg,2003,76: 194-201.

[55] Brunsvig PF,et al. Bone marrow micrometastases in advancedstage non-small cell lung carcinoma patients. Lung Cancer,2008,61: 170-176.

[56]Sienel W,et al. Detection of MAGE-A transcripts in bone marrowis an independent prognostic factor in operable non-small-cell lungcancer. Clin Cancer Res,2007,13: 3840-3847.

[57]Pantel K,et al. Immunocytochemical detection of isolated tumourcells in bone marrow of patients with untreated stage C prostaticcancer. Eur J Cancer,1995,31A: 1627-1632.

[58]Wood DP Jr,et al. Presence of circulating prostate cells in thebone marrow of patients undergoing radical prostatectomy ispredictive of disease-free survival. J Clin Oncol,1997,15: 3451-3457.

[59]Kollermann J,et al. Comparative immunocytochemical assessmentof isolated carcinoma cells in lymph nodes and bone marrow ofpatients with clinically localized prostate cancer. Int J Cancer,1999,84: 145-149.

[60]Kollermann J,et al. Prognostic significance of disseminated tumorcells in the bone marrow of prostate cancer patients submitted toneoadjuvant hormonal therapy. J Clin Oncol, 2008, 26:4928-4933.

[61]Obemeder R,et al. Immunocytochemical detection and phenotypiccharacterization of micrometastatic tumour cells in bone marrow ofpatients with prostate cancer. Ural Res,1994,22: 3-8.

[62]Berg A,et al. Impact of disseminated tumor cells in bone marrowat diagnosis in patients with non metastatic prostate cancer treatedby definitive radiotherapy. Int J Cancer,2007,120: 1603-1609.

[63] Weckermann D,et al. Disseminated cytokeratin positive tumorcells in the bone marrow of patients with prostate cancer:detection and prognostic value. J Urol,2001,166: 699-703.

[64]Gao CL,et al. Detection of circulating prostate specific antigenexpressing prostatic cells in the bone marrow of radicalprostatectomy patients by sensitive reverse transcriptasepolymerase chain reaction. J Ural,1999,161: 1070-1076.

[65] Heiss MM,et al. Minimal residual disease in gastric cancer:evidence of an independent prognostic relevance of urokinasereceptor expression by disseminated tumor cells in the bonemarrow. J Clin Oncol,2002,20: 2005-2016.

[66] Kaifi JT,et al. Tumor-cell homing to lymph nodes and bonemarrow and CXCR4 expression in esophageal cancer. J NatlCancer Inst,2005,97: 1840-1847.

[67]Thorban S,et al. Immunocytochemical detection of isolatedepithelial tumor cells in bone -marrow of patients with pancreaticcarcinoma. Am J Surg,1996,172: 297-298.

[68] Izbicki JR,et al. Micrometastasis in solid epithelial tumors:impact on surgical oncology. Surgery,2002,131: 1-5.

[69]Fehm T,et al. Detection of disseminated tumor cells in patientswith gynecological cancers. Gynecol Oncol, 2006, 103:942-947.

[70]Gath HJ,et al. Immunocytologic detection of isolated tumor cellsin bone marrow of patients with squamous cell carcinomas of thehead and neck region. Int J Oral Maxillafac Surg,1995,24:351-355.

[71]Pantel K,et al. Staging of head and neck cancer. N Engl J Med,1995,332: 1789-1790.

[72] Partridge M,et al. Detection of minimal residual cancer toinvestigate why oral tumors recur despite seemingly adequatetreatment. Clin Cancer Res,2000,6: 2718-2725.

[73]de Nooij-van Dalen AG,et al. Characterization of the human Ly-6antigens,the newly annotated member Ly-6K included,asmolecular markers for head-and-neck squamous cell carcinoma.Int J Cancer,2003,103,768-774.

[74] Partridge M,et al. Detection of rare disseminated tumor cellsidentifies head and neck cancer patients at risk of treatmentfailure. Clin Cancer Res,2003,9: 5287-5294.

[75]Col not DR,et al. Clinical Significance of micrometastatic cellsdetected by E48 ( Ly-6D) reverse transcription-polymerase chainreaction in bone marrow of head and neck cancer patients. ClinCancer Res,2004,10: 7827-7833.

[76] Wiedswang G,et al. Comparison of the clinical significance ofoccult tumor cells in blood and bone marrow in breast cancer. IntJ Cancer,2006,118: 2013-2019.

[77] Benoy IH,et al. Real-time RT-PCR detection of disseminatedtumour cells in bone marrow has superior prognostic significancein comparison with circulating tumour cells in patients with breastcancer. Br J Cancer,2006,94: 672-680.

[78]Bidard FC,et al. Prognosis of women with stage IV breast cancerdepends on detection of circulating tumor cells rather thandisseminated tumor cells. Ann Oneal,2008,19: 496-500.

[79]Hayes DF,et al. Circulating tumor cells at each follow-up timepoint during therapy of metastatic breast cancer patients predictprogression-free and overall survival. Clin Cancer Res,2006,12: 4218-4224.

[80]Cristofanilli M,et al. Circulating tumor cells,disease progression,and survival in metastatic breast cancer. N Engl J Med,2004,351: 781-791.

[81]Budd GT,et al. Circulating tumor cells versus imaging-predicting overall survival in metastatic breast cancer. Clin Cancer Res,2006,12: 6403-6409.

[82]Pierga JY,et al. Circulating tumor cell detection predicts earlymetastatic relapse after neoadjuvant chemotherapy in largeoperable and locally advanced breast cancer in a phase Ⅱrandomized trial. Clin Cancer Res,2008,14: 7004-7010.

[83]Pachmann K, et al. Monitoring the response of circulatingepithelial tumor cells to adjuvant chemotherapy in breast cancerallows detection of patients at risk of early relapse. J Clin Oncol,2008,26: 1208-1215.

[84]Riethdorf S,et al. Detection and HER2 expression of circulatingtumor cells: prospective monitoring in breast cancer patientstreated in the neoadjuvant GeparQuattro trial. Clin Cancer Res,2010,16: 2634-2645.

[85]Rack BK,et al. Prognostic relevance of circulating tumor cells( CTCs) in peripheral blood of breast cancer patients before andafter adjuvant chemotherapy: the German SUCCESS-trial. J ClinOncol,2008,28 ( S) : Abstract 503.

[86]Gralow J,et al. Clinical cancer advances 2007: major researchadvances in cancer treatment,prevention,and screening - areport from the American Society of Clinical Oncology. J ClinOncol,2008,26: 313-325.

[87]Piccart-Gebhart MJ,et al. Trastuzumab after adjuvant chemotherapyin HER2-positive breast cancer. N Engl J Med,2005,353: 1659-1672.

[88]Braun S,et al. ErbB2 over-expression on occult metastatic cells inbone marrow predicts poor clinical outcome of stage Ⅰ ~Ⅲ breastcancer patients. Cancer Res,2001,61: 1890-1895.

[89]Wulfing P,et al. HER2-positive circulating tumor cells indicatepoor clinical outcome in stage Ⅰ to Ⅲ breast cancer patients.Clin Cancer Res,2006,12: 1715-1720.

[90]Solomayer EF,et al. Comparison of HER2 status between primarytumor and disseminated tumor cells in primary breast cancerpatients. Breast Cancer Res Treat,2006,98: 179-184.

[91]Fehm T,et al. Determination of HER2 status using both serumHER2 levels and circulating tumor cells in patients with recurrentbreast cancer whose primary tumor was HER2 negative or ofunknown HER2 status. Breast Cancer Res,2007,9: R74.

[92]Stoecklein NH,et al. Direct genetic analysis of single disseminatedcancer cells for prediction of outcome and therapy selection inesophageal cancer. Cancer Cell,2008,13: 441-453.

[93]Meng S,et al. HER-2 gene amplification can be acquired as breastcancer progresses. Proc Natl Acad Sci USA,2004,101:9393-9398.

[94]Meng S,et al. uPAR and HER-2 gene status in individual breastcancer cells from blood and tissues. Proc Natl Acad Sci USA,2006,103: 17361-17365.

[95]Hanrahan EO,et al. Overall survival and cause-specific mortalityof patients with stage Tla,bNOMO breast carcinoma. J ClinOncol,2007,25: 4952-4960.

[96] Meng S,et al. Circulating tumor cells in patients with breastcancer dormancy. Clin Cancer Res,2004,10: 8152-8162.

[97]Koebel CM,et al. Adaptive immunity maintains occult cancer inan equilibrium state. Nature,2007,450: 903-907.

[98] Mahnke YD,et al. Maintenance of long-term tumour-specificT-cell memory by residual dormant tumour cells. Immunology,2005,115: 325-336.

[99] Galon J,et al. Type,density,and location of immune cellswithin human colorectal tumors predict clinical outcome.Science,2006,313: 1960-1964.

[100]Condeelis J,et al. Macrophages: obligate partners for tumor cellmigration,invasion,and metastasis. Cell,2006,124: 263-266.

[101] Steeg PS. Tumor metastasis: mechanistic insights and clinicalchallenges. Nat Med,2006,12: 895-904.

[102]Kallergi G,et al. Vascular endothelial growth factor ( VEGF)expression in CTCs of breast cancer patients. In: Proceedings ofthe 99th Annual Meeting of the American Association for CancerResearch,Apr 12-16,2008,San Diego,CA. Philadelphia:MCR,Abstract 276.

[103]Coussens LM,et al. Inflammation and cancer. Nature,2002,420: 860-867.

[104]Chang HY,et al. Gene expression signature of fibroblast serumresponse predicts human cancer progression: similarities betweentumors and wounds. PLoS Biol,2004,2: E7.

[105]Clarke MF,et al. Stem cells: the real culprits in cancer? SciAm,2006,295: 52-59.

[106]Trumpp A,et al. Mechanisms of disease: cancer stem cells -targeting the evil twin. Nat Clin Pract Oncol,2008,5: 337-347.

[107] Liu R,et al. The prognostic role of a gene signature fromtumorigenic breast-cancer cells. N Engl J Med,2007,356: 217-226.

[108]Ginestier C,et al. ALDHI is a marker of normal and malignanthuman mammary stem cells and a predictor of poor clinical outcome.Cell Stem Cell,2007,1: 555-567.

[109]Becker S,et al. Detection of cytokeratin-positive cells in the bonemarrow of breast cancer patients undergoing adjuvant therapy.Breast Cancer Res Treat,2006,97: 91-96.

[110] Becker S,et al. Primary systemic therapy does not eradicatedisseminated tumor cells in breast cancer patients. Breast CancerRes Treat,2007,106: 239-243.

[111]Braun S,et al. Tumorantigen heterogeneity of disseminated breastcancer cells: implications for immunotherapy of minimal residualdisease. Int J Cancer,1999,84: 1-5.

[112]Balic M,et al. Most early disseminated cancer cells detected inbone marrow of breast cancer patients have a putative breastcancer stem cell phenotype. Clin Cancer Res,2006,12:5615-5621.

[113]Theodoropoulos PA,et al. Detection of circulating tumor cells withbreast cancer stem cell-like phenotype in blood samples of patientswith breast cancer. In: Proceedings of the 99th Annual Meeting ofthe American Association for Cancer Research,Apr 12-16,2008,San Diego,CA. Philadelphia: MCR,Abstract 2008.

[114]Wilson A,et al. Bone marrow haematopoietic stem cell niches.Nat Rev Immunol,2006,6: 93-106.

[115] Pantel K,et al. Dissecting the metastatic cascade. Nat RevCancer,2004,4: 448-456.

[116] Bidard FC,et al. Disseminated tumor cells of breast cancerpatients: a strong prognostic factor for distant and local relapse.Clin Cancer Res,2008,14: 3306-3311.

[117]Braun S,et al. Cytokeratin-positive cells in the bone marrow andsurvival of patients with stage Ⅰ,Ⅱ,or Ⅲ breast cancer. NEngl J Med,2000,342: 525-533.

[118] Klein CA,et al. Comparative genomic hybridization,loss ofheterozygosity,and DNA sequence analysis of single cells. ProcNatl Acad Sci USA,1999,96: 4494-4499.

[119]Schmidt-Kittler O,et al. From latent disseminated cells to overtmetastasis: genetic analysis of systemic breast cancer progression.Proc Natl Acad Sci USA,2003,100: 7737-7742.

[120]Schardt JA,et al. Genomic analysis of single cytokeratin-positivecells from bone marrow reveals early mutational events in breastcancer. Cancer Cell,2005,8: 227-239.

[121]Gangnus R,et al. Genomic profiling of viable and proliferativemicrometastatic cells from early-stage breast cancer patients. ClinCancer Res,2004,10: 3457-3464.

[122] Schmidt H,et al. Asynchronous growth of prostate cancer isreflected by circulating tumor cells delivered from distinct,evensmall foci,harboring loss of heterozygosity of the PTEN gene.Cancer Res,2006,66: 8959-8965.

[123]Fidler IJ. The pathogenesis of cancer metastasis: the‘seed andsoil’hypothesis revisited. Nat Rev Cancer,2003,3: 453-458.

[124]Wrage M, et al. Genomic profiles associated with earlymicrometastasis in lung cancer: relevance of 4q deletion. ClinCancer Res,2009,15: 1566-1574.

[125]Schlimok G,et al. Micrometastatic cancer cells in bone marrow:in vitro detection with anti-cytokeratin and in vivo labeling withanti-17-1A monoclonal antibodies. Proc Natl Acad Sci USA,1987,84: 8672-8676.

[126]Harbeck N,et al. Tumour cell detection in the bone marrow ofbreast cancer patients at primary therapy: results of a 3-yearmedian follow-up. Br J Cancer,1994,69: 566-571.

[127]Diel IJ,et al. Micrometastatic breast cancer cells in bone marrowat primary surgery: prognostic value in comparison with nodalstatus. J Natl Cancer Inst,1996,88: 1652-1658.

[128]Molino A,et al. Bone marrow micrometastases in 109 breastcancer patients: correlations with clinical and pathologicalfeatures and prognosis. Breast Cancer Res Treat,1997,42:23-30.

[129]Mansi JL,et al. Outcome of primary-breast-cancer patients withmicrometastases: a long-term follow-up study. Lancet,1999,354: 197-202.

[130]Gebauer G,et al. Epithelial cells in bone marrow of breast cancerpatients at time of primary surgery: clinical outcome during longtermfollow-up. J Clin Oncol,2001,19: 3669-3674.

[131]Gerber B,et a1. Simultaneous immunohistochemical detection oftumor cells in lymph nodes and bone marrow aspirates in breastcancer and its correlation with other prognostic factors. J ClinOncol,2001,19: 960-971.

[132]Naume B,et a1. Detection of isolated tumor cells in bone marrowin early-stage breast carcinoma patients: comparison withpreoperative clinical parameters and primary tumorcharacteristics. Clin Cancer Res,2001,7: 4122-4129.

[133]Wiedswang G,et a1. Detection of isolated tumor cells in bonemarrow is an independent prognostic factor in breast cancer. JClin Oncol,21: 3469-3478.

[134] Pierga JY,et al. Clinical significance of immunocytochemicaldetection of tumor cells using digital microscopy in peripheralblood and bone marrow of breast cancer patients. Clin CancerRes,2004,10: 1392-1400.

[135]Schindlbeck C,et al. Prognostic relevance of disseminated tumorcells in the bone marrow and biological factors of 265 primarybreast carcinomas. Breast Cancer Res,2005,7: 1174-1185.

[136]Farmen RK,et al. Bone marrow cytokeratin 19 mRNA level is anindependent predictor of relapse-free survival in operable breastcancer patients. Breast Cancer Res Treat,2008,108: 251-258.

[137]Mikhitarian K,et al. Detection of mammaglobin mRNA inperipheral blood is associated with high-grade breast cancer:interim results of a prospective cohort study. BMC Cancer,2008,8: 55.

[138]Silly H,et al. Micrometastatic tumour cells in bone marrow incolorectal cancer. Lancet,1992,340: 1288.

[139] Conzelmann M,et al. Cytokeratin 20 and guanylyl cyclase CmRNA is largely present in lymph node and liver specimens ofcolorectal cancer patients. Int J Cancer,2003,107: 617-628.

[140]Kienle P,et al. Decreased detection rate of disseminated tumorcells of rectal cancer patients after preoperative chemoradiation: afirst step towards a molecular surrogate marker for neoadjuvanttreatment in colorectal cancer. Ann Surg,2003,238: 324-330.

[141] Stathopoulou A,et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operablebreast cancer: evaluation of their prognostic significance. J ClinOncol,2002,20: 3404-3412.

[142]Weigelt B,et al. Marker genes for circulating tumour cellspredict survival in metastasized breast cancer patients. Br JCancer,2003,88: 1091-1094.

[143]Nieto Y,et al. Prognostic significance of occult tumor cells in theapheresis products of patients with advanced breast cancerreceiving high-dose chemotherapy and autologous hematopoieticprogenitor cell support. Biol Blood Marrow Transplant,2004,10: 415-425.

[144] Giatromanolaki A,et al. Assessment of highly angiogenic anddisseminated in the peripheral blood disease in breast cancerpatients predicts for resistance to adjuvant chemotherapy and earlyrelapse. Int J Cancer,2004,108: 620-627.

[145]Jotsuka T,et al. Persistent evidence of circulating tumor cellsdetected by means of RT-PCR for CEA mRNA predicts earlyrelapse: a prospective study in node-negative breast cancer.Surgery,2004,135: 419-426.

[146]Xenidis N,et al. Clinical relevance of circulating CK-19 mRNApositivecells detected during the adjuvant tamoxifen treatment inpatients with early breast cancer. Ann Oncol,2007,18:1623-1631.

[147]Cristofanilli M,et al. Circulating tumor cells in metastatic breastcancer: biologic staging beyond tumor burden. Clin BreastCancer,2007,7: 471-479.

[148]Ignatiadis M,et al. Different prognostic value of cytokeratin-19mRNA-positive circulating tumor cells according to estrogenreceptor and HER2 status in early-stage breast cancer. J ClinOncol,2007,25: 5194-5202.

[149] Ignatiadis M,et al. Molecular detection and prognostic value ofcirculating cytokeratin-19 messenger RNA-positive and HER2messenger RNA-positive cells in the peripheral blood of women withearly-stage breast cancer. Clin Breast Cancer,2007,7: 883-889.

[150]Ignatiadis M,et al. Prognostic value of the molecular detection ofcirculating tumor cells using a multimarker reverse transcriptionPCR assay for cytokeratin 19,mammaglobin A,and HER2 inearly breast cancer. Clin Cancer Res,2008,14: 2593-2600.

[151]Cohen SJ,et al. Relationship of circulating tumor cells to tumorresponse,progression-free survival, and overall survival inpatients with metastatic colorectal cancer. J Clin Oncol,2008,26: 3213-3221.

[152]Uen YH,et al. Prognostic significance of multiple molecularmarkers for patients with stage Ⅱ colorectal cancer undergoingcurative resection. Ann Surg,2007,246: 1040-1046.

[153]Sadahiro S, et al. Detection of carcinoembryonic antigenmessenger RNA-expressing cells in peripheral blood 7 days aftercurative surgery is a novel prognostic factor in colorectal cancer.Ann Surg Oncol,2007,14: 1092-1098.

[154]Allen-Mersh TG,et al. Role of circulating tumour cells inpredicting recurrence after excision of primary colorectalcarcinoma. Br J Surg,2007,94: 96-105.

[155]Iinuma H, et al. Usefulness and clinical significance ofquantitative real-time RT-PCR to detect isolated tumor cells in theperipheral blood and tumor drainage blood of patients withcolorectal cancer. Int J Oncol,2006,28: 297-306.

[156]Sadahiro S, et al. Detection of carcinoembryonic antigenmessenger RNA-expressing cells in portal and peripheral bloodduring surgery does not influence relapse in colorectal cancer.Ann Surg Oncol,2005,12: 988-994.

[157] Sadahiro S,et al. Detection of tumor cells in the portal andperipheral blood of patients with colorectal carcinoma usingcompetitive reverse transcriptase-polymerase chain reaction.Cancer,2001,92: 1251-1258.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈