首页 理论教育 哮喘的免疫病理

哮喘的免疫病理

时间:2023-05-09 理论教育 版权反馈
【摘要】:哮喘是一种慢性气道炎症性疾病,伴有多种炎症细胞和结构细胞的激活,激活的细胞产生多种炎症介质导致哮喘特征性的病理生理改变。由于哮喘的复杂性和遗传性特点,至今尚不能对哮喘采用统一的定义。对支气管哮喘发病机制的认识有助于制定哮喘的标准定义。糖皮质激素可以减少过敏性哮喘患者血液中和BALF中激活的CD4+细胞数量,这种CD4+细胞的减少与哮喘临床症状的改善相关。

第二十六章 哮喘的免疫病理

一、概述

哮喘是一种慢性气道炎症性疾病,伴有多种炎症细胞和结构细胞的激活,激活的细胞产生多种炎症介质导致哮喘特征性的病理生理改变。生理学上以可逆的气流阻塞和气道高反应性为特征,病理学上以支气管黏膜下嗜酸性粒细胞和CD4+T细胞聚集、黏液腺增生、气道上皮下胶原层增厚、黏膜下层基质沉积、肥大细胞脱颗粒以及气道平滑肌细胞增生肥大为特征。早期认为肥大细胞和嗜酸性粒细胞是哮喘气道炎症中的决定性细胞,后来研究的重心逐渐转移到T淋巴细胞,特别是T辅助细胞被认为是哮喘气道炎症反应的发起者和主导者。由于哮喘的复杂性和遗传性特点,至今尚不能对哮喘采用统一的定义。1987年美国胸科协会把哮喘的定义建立在临床表现基础上,但是这样的定义不能体现哮喘的慢性发病状态,也不能与其他伴有肺部嗜酸性粒细胞浸润的疾病(如慢性咳嗽或气道高反应)鉴别。在最近20年里,哮喘发病率及死亡率和致残率均有所上升,尽管导致其上升的因素还不完全清楚,已经发现遗传因素(如父母特应性体质)、空气污染、现代生活方式、早期孩童时代病毒或细菌暴露、过敏原暴露以及饮食习惯均与之有关。对支气管哮喘发病机制的认识有助于制定哮喘的标准定义。本章将从组织病理学方面,特别是炎症细胞和细胞因子方面阐述目前对哮喘的认识。

二、病因

支气管哮喘的病因还不清楚,有待于对可能的基因遗传和环境触发因素进行更深入的研究。临床上哮喘分过敏性、非过敏性(内源性)和职业性3种。哮喘患者中50%以上合并特应性体质,这部分患者通常存在一种或多种常见的过敏原皮肤试验阳性,而且伴有血清Ig E水平升高。这些哮喘患者暴露于特定过敏原后被致敏,以后表现为持续性的过敏原特异性IgE反应。导致这种免疫学状态转换的因素还需进一步研究来阐明,目前认为与过敏原暴露的时间、对特定过敏原的先天遗传素质及合并病毒感染有一定关系。给致敏的哮喘患者吸入过敏原可表现速发气道反应(early airways response,E AR),持续30~60 min后肺功能恢复到激发前水平,约40%~50%哮喘患者会出现迟发气道反应(later airways response,L A R),一般在过敏原激发后6 h出现,可持续到12 h。对过敏原的反应不仅表现在临床症状,还包括炎症细胞聚集,通过对这一系列变化的研究,有望能阐明哮喘的机制。

非特应性(内源性)哮喘和职业性哮喘对皮肤试验无明显反应,也无血清Ig E水平升高,哮喘症状出现在暴露于冷空气、某些药物、有毒化学物质或运动以后。然而最近研究提示,特应性体质患者Ig E反应可以局限于特定组织如鼻黏膜的局部环境内。鉴于循环中IgE(致敏皮肤肥大细胞)水平依赖局部合成的IgE超过组织结合能力溢出部分,那些内源性哮喘个体可能也存在特应性体质并表现局部IgE反应。支气管活检显示内源性哮喘患者表达IgE高亲和受体(FcεRI)的细胞增多,提示IgE参与非特应性哮喘发病机制。但是也有研究认为IgE反应不参与非特应性的职业性哮喘,这一现象还有待进一步研究。

三、组织病理学概述

最早的关于哮喘病理学资料来自死于哮喘持续状态患者的尸解所见:支气管腔内含有闭塞性黏液栓,支气管组织内嗜酸性粒细胞浸润,广泛的上皮细胞脱落,气道平滑肌和黏膜下腺体肥大或增生,网状基膜增厚。近年来通过纤维支气管镜可直接从轻度至重度哮喘患者气道获取标本,发现症状较轻的哮喘患者也显示上皮层细胞脱落、嗜酸性粒细胞浸润、网状基膜胶原增生。通过免疫细胞化学标记手段可以区分不同的炎症细胞在哮喘生理及病理学特征中的作用,虽然嗜酸性粒细胞和T细胞最受关注,多种细胞之间的相互作用(包括嗜碱性粒细胞、上皮细胞和B淋巴细胞)使哮喘的发病机制更加复杂。

四、参与炎症免疫反应的细胞

(一)T淋巴细胞

作为获得性免疫的主要细胞,T淋巴细胞有协同和放大抗原特异性及非抗原特异性炎症细胞(如B细胞、嗜酸性粒细胞)反应的作用,因此T淋巴细胞被认为是支气管哮喘发生过程中的主要调节细胞。目前根据T淋巴细胞表面标记和效应的不同将其分为2个不同的亚群。表达CD4抗原并主要参与体液免疫的T细胞称为辅助性T细胞(Th细胞),表达CD8抗原并主要参与细胞免疫的T细胞称为细胞毒/抑制性T细胞Tc/s。CD8+T淋巴细胞通过与MHCⅠ类分子结合而识别其所提呈的内源性抗原,从而参与细胞介导的反应,CD4+T淋巴细胞可以识别专职抗原递呈细胞表面的MHCⅡ类分子及其所提呈的外源性抗原。因此,由于CD4+细胞可以启动抗原特异性炎症反应并调节免疫球蛋白合成,其在哮喘发病机制中吸引了很多研究者的注意力。然而一些研究提示CD8+T淋巴细胞也参与哮喘发病机制,特别是参与抑制抗原激发后LAR的产生。

Th细胞在哮喘发病机制中占有重要地位,纤支镜活检和支气管肺泡灌洗证实哮喘患者气道黏膜Th细胞增多,这些T淋巴细胞表面表达IL-2受体(CD25),证实它们处于激活状态,这些激活的T淋巴细胞数量不仅与哮喘的严重程度、气道高反应相关,还与激活的嗜酸性粒细胞数量相关,另外发现循环中CD4+细胞的激活也与哮喘的临床表现有关。糖皮质激素可以减少过敏性哮喘患者血液中和BALF中激活的CD4+细胞数量,这种CD4+细胞的减少与哮喘临床症状的改善相关。Walker及其同事的研究表明当BALF中CD4+,CD8+T淋巴细胞都表达CD25受体时,只有激活的CD4+T细胞与BALF中嗜酸性粒细胞数量和哮喘严重程度有关,该研究进一步支持Th细胞在内源性和外源性哮喘中的核心作用。

根据分泌细胞因子的不同,Th细胞又可分为2个不同的亚型:主要表达IFN-γ和IL-2而不表达IL-4的CD4+T细胞称为Th1细胞,其所表达的细胞因子称为Th1型细胞因子;主要表达IL-4,IL-5,IL-9和IL-13而不表达IFN-γ的CD4+T细胞称为Th2细胞,其所表达的细胞因子称为Th2型细胞因子。另有一类细胞表达T L-12,IFN-γ,IL-4,IL-5,它是T淋巴细胞的一个亚型,或是向T H1和T H2细胞亚群进行分化的前体细胞,称为Th0细胞。最近也有人将表达高水平TGFβ和大量IL-4,IL-10的CD4+T淋巴细胞称为Th3型细胞,根据TGFβ的潜在抑制性作用,Th3型细胞被认为与口服耐受(oral tolerance)和调节Th1、Th2细胞效应有关。致敏的T细胞经抗原刺激后发生分化,受周围环境中细胞因子的影响,开始产生特定系列细胞因子。当IL-12和(或)IFN-γ存在时,向Th1细胞分化并产生Th1型因子,主要参与病毒和细菌感染的防御反应。如果周围环境存在IL-4,则向Th2细胞分化并产生Th2型因子,主要参与寄生虫感染的防御反应和过敏性炎症反应,具体机制包括诱导IgE产生、肥大细胞分化、嗜酸性粒细胞发育、迁移和激活等。目前,对不同Th细胞亚型的认识和定义主要来自对小鼠的研究,人体的T细胞尚缺乏如此清晰的分类界线,人Th细胞可以同时表达Th1和Th2型细胞因子(如IL-4和IFN-γ),通常通过IFN-γ/IL-4的比值来区分人Th1和Th2细胞。人Th细胞正常情况下表达多种细胞因子,在过敏性疾病时,细胞因子范围有可能向Th2型倾斜。

由于抗原递呈细胞处理和呈递抗原可以影响Th细胞分化的方向,Mosmann提出了Th2假说推论,认为哮喘Th2细胞反应增强,同时伴有Th1细胞反应下降,使Th2因子表达增加而Th1因子表达减少,这种变化导致了哮喘一系列临床表现。以后的研究证实哮喘存在过敏原依赖的Th2反应,研究表明哮喘BA LF中表达IL-2,IL-3,IL-4,IL-5和GM-CSF mRN A的细胞数量增加,而IFN-γm RN A阳性细胞数量没有增加。哮喘患者的气道在无症状时期也表达一系列Th2型细胞因子,在出现临床症状时期和过敏原刺激后这些因子上调。Th2细胞衍生的IL-5的变化与组织中嗜酸性粒细胞的分化和寿命延长明显有关。在小鼠的研究中发现过敏原刺激后,Th2细胞释放的细胞因子可能通过诱导骨髓嗜酸性粒细胞成熟、增殖,或诱导嗜酸性粒细胞祖细胞从骨髓释放,从而导致全身免疫反应扩大。哮喘气道中IL-4和IL-13也来源于激活的Th2细胞,这些细胞因子的局部作用包括促使B细胞产生Ig E。这些细胞因子能使血管内皮细胞VCA M-1表达上调,促进嗜酸性粒细胞聚集,IL-4还促使T细胞向Th2分化并表达Th2系列细胞因子。

尽管Th2假说已被多数人接受,然而越来越多的研究对Th2假说提出质疑,哮喘似乎并不能简单地用Th2假说来概括。一些研究表明哮喘气道和循环中IFN-γ水平并不像预计的那样下调,反而明显上升,而且IFN-γ水平的上升与IL-4产量的增加无显著差异。最近有研究表明哮喘气道产生IFN-γ的CD8+T细胞的数量上升,并且与哮喘的严重程度、气道高反应性和血嗜酸性粒细胞增多有关。目前多倾向于认为Th2优势反应是在哮喘病程或进展过程中逐渐转换而来的。

总之,T细胞衍生的细胞因子是过敏性炎症发病机制中一系列事件的起因,研究中还发现多种细胞不仅仅限于传统上认为的免疫调节功能,在哮喘患者中还表达细胞因子,常处于“激活”状态,在非哮喘个体中这些细胞是相对静止的。目前已确定出大量细胞因子,与哮喘有关的细胞因子其作用和来源如表26-1所示。

表26-1 哮喘发病机制中涉及的细胞因子

img25

*:在血清中升高;
**:只在非过敏性哮喘增高;
***:在重症哮喘升高。

(二)嗜酸性粒细胞

嗜酸性粒细胞是骨髓衍生的分化末期细胞,以二分裂的核为特征,通过释放细胞毒性介质参与机体寄生虫感染防御反应。这些介质包括主要碱性蛋白(major basic protein,MBP)、嗜酸性粒细胞阳离子蛋白(eosinophilic cationic protein,ECP)、嗜酸性粒细胞过氧化物酶(eosinophil peroxidase,EPO)、嗜酸性粒细胞衍生神经毒素(eosinophil-derived neurotoxin,END),这些物质储存在嗜酸性粒细胞内膜包裹的颗粒内。嗜酸性粒细胞由表达CD34抗原的早期造血干细胞演化而来。这些CD34+细胞在IL-3和(或)G M-CSF存在情况下向髓系细胞分化。嗜酸性粒细胞祖细胞最终分化成成熟嗜酸性粒细胞需要IL-5的存在,IL-5是Th2淋巴细胞的产物,嗜酸性粒细胞本身可表达这种细胞因子。实际上嗜酸性粒细胞可释放大量细胞因子包括IL-1,IL-2,IL-3,IL-5,IL-6,IL-8,IL-10,IL-11和IL-12,TGFβ,T NFα,GMCSF,MIP-1α,RA N TES。从机体防御反应的角度讲,现在认为这些细胞不仅参与病原入侵造成的物理损害,也有助于免疫反应的调节。

嗜酸性粒细胞是哮喘和相关过敏性疾病的主要病理生理学基础,是造成哮喘组织损害、气道功能改变的主要效应细胞。支气管黏膜和灌洗液中嗜酸性粒细胞数量的升高是哮喘较恒定的特征,并且这种特征会保持很多年。嗜酸性粒细胞不仅存在于过敏性哮喘,也存在于内源性和职业性哮喘,这强烈提示嗜酸性粒细胞在哮喘发病机制中起作用。外周血嗜酸性粒细胞计数的升高不仅见于过敏性哮喘,也见于内源性哮喘,但是哮喘外周血嗜酸性粒细胞的升高不如其他嗜酸性粒细胞相关性疾病明显,而且经常处于正常水平。哮喘外周血嗜酸性粒细胞表现“低密度”,最近研究证实它们是未成熟型。

支气管活检发现哮喘患者中央和外周气道均存在T细胞和嗜酸性粒细胞,在气道上皮中和痰液中检验出嗜酸性粒细胞提示这些细胞穿过基膜向过敏原沉积的部位迁移。尽管BA LF中嗜酸性粒细胞数目占较小的百分比,1%~5%,它们被启动并开始产生细胞毒性蛋白、脂质介质和细胞因子。由于只有部分细胞在表达ECP,TGFβ,IL-5α方面表现高活性,这些长驻细胞群表现明显的多相性。嗜酸性粒细胞能够释放细胞毒性蛋白的特性成为其在哮喘病理生理学研究中的热点。哮喘的气道上皮细胞脱落区域附近以及痰液中含有高浓度MBP,在动物中MBP可诱发支气管收缩及气道高反应性。MBP的这种作用可能与以下机制有关:气道上皮向下层平滑肌传送激动剂被阻断,或气道上皮衍生的舒张因子减少。另外MBP可能通过作用于毒蕈样M 2受体而影响对迷走神经介导的支气管收缩反应的反馈抑制作用。

嗜酸性粒细胞在临床症状稳定期的哮喘患者即表现较高的基线值,经过敏原激发后发生明显聚集。部分患者BA LF中嗜酸性粒细胞上升至50%。在职业性哮喘,暴露于相应的致敏剂如对邻苯二甲酸酐(plicatic acid)或异氰酸二甲苯等也可诱发这样的反应。BA LF中嗜酸性粒细胞的出现与过敏性哮喘的迟发相反应(L AR)存在一定联系,与急性气道高反应性也可能存在联系。近来发现这些细胞分泌TGFβ和IL-11等促纤维化细胞因子与慢性气道壁结构改变有关。在急性嗜酸性粒细胞性炎症中,嗜酸性粒细胞发生凋亡。在IL-5,IL-3和GM-CSF存在时,嗜酸性粒细胞凋亡延迟,嗜酸性粒细胞在支气管黏膜存在时间延长导致对气道的损害加重。减轻哮喘症状的药物如糖皮质激素可能是通过减少这些增加嗜酸性粒细胞存活的因子而减少嗜酸性粒细胞在肺部的浸润。

尽管大量文献报道经过敏原激发后哮喘患者出现嗜酸性粒细胞聚集,这些细胞的聚集与L AR的发生是伴随关系还是因果关系还不清楚。使用支气管活检和支气管肺泡灌洗的临床研究显示,发生速发和迟发哮喘反应的个体在过敏原激发后3 h内均可在肺部检测到嗜酸性粒细胞,这种变化被推测是外周血嗜酸性粒细胞在肺部聚集的结果,实际上嗜酸性粒细胞祖细胞在局部区域分化也有可能导致嗜酸性粒细胞数量增多。最近对小鼠的一项体外移植实验提示过敏原诱发的LAR与局部MBP和IL-5mRNA的表达有关。这个实验没有炎症细胞聚集的过程,提示肺部存在着嗜酸性粒细胞祖细胞,可能其在局部释放的IL-5等促嗜酸性粒细胞生成因子的作用下合成MBP。特别是已经发现血循环中CD34+嗜酸性粒细胞前体细胞数量在遗传性过敏性个体增加,在支气管哮喘恶化期,或过敏原激发后升高。无论发生单相还是双相反应,过敏原激发后哮喘患者骨髓中嗜酸/嗜碱性粒细胞祖细胞(eosinophil/basophil colony-forming cell,Eo/B-CFU)数量均增加。然而那些发生LAR的哮喘患者的骨髓对IL-5更敏感提示这些患者骨髓中Eo/B-CFU细胞向成熟细胞分化的程序已经被启动。在这一领域正在进行的研究已经在哮喘患者肺部发现驻留的CD34+细胞,这为哮喘的发病机制带来全新的理念。

虽然嗜酸性粒细胞与哮喘存在确切的联系,但是在其他几种疾病中也可见到嗜酸性粒细胞增多,如吸烟相关性肺部疾病,囊性纤维化,嗜酸性粒细胞性肺炎,以及慢性咳嗽咳痰。在这些疾病中嗜酸性粒细胞的活化状态或细胞表型可能存在差别。

(三)嗜碱性粒细胞

嗜碱性粒细胞是外周血循环中的一种异染性细胞,最早由Erhlich在1879年描述,曾被认为是组织肥大细胞在循环中的前体细胞。实际上嗜碱性粒细胞与肥大细胞有很多共同特征,包括细胞表面存在高亲和IgE受体、合成和释放组胺、细胞颗粒内含有酸性蛋白多糖等。然而有利于肥大细胞分化的环境却不能诱使嗜碱性粒细胞形成肥大细胞。特别是最近发现嗜碱性粒细胞和嗜酸性粒细胞具有共同的祖细胞,提示嗜碱性粒细胞组成独特的炎症细胞群,并且具有与嗜酸性粒细胞相似的特征。值得注意的是,这两种细胞均可产生MBP,EPC和EPO,在IL-5的作用下完成终末分化。

由于缺乏细胞特异性标志,以及嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞生理功能的相似,极大限制了对嗜碱性粒细胞的研究。受到刺激后嗜碱性粒细胞可以释放组胺、LTC4、LTD4及其他预先储存在颗粒中的介质,并合成新的介质,目前认为嗜碱性粒细胞在过敏性疾病中作为一种效应细胞起作用。在临床症状稳定的哮喘中嗜碱性粒细胞的数目并不增多,过敏原激发后在迟发相炎症反应时期BALF中或纤维支气管镜活检发现嗜碱性粒细胞出现轻度上升。在那些终年哮喘发作的患者中超过50%的人痰中嗜碱性粒细胞组织化学染色阳性,但与嗜酸性粒细胞和肥大细胞不同,嗜碱性粒细胞在痰中的出现与气道高反应性无关系。最近采用嗜碱性粒细胞单克隆抗体标记方法的研究表明死于重症哮喘的患者肺内嗜碱性粒细胞的数量明显高于死于其他疾病的哮喘患者和非哮喘患者。在这些患者,嗜碱性粒细胞分布于整个大、小气道,包括气道上皮组织、黏膜下层和肺泡壁。这提示嗜碱性粒细胞在重症哮喘的发病机制中可能发挥重要作用。嗜碱性粒细胞迁移到气道黏膜层可能与特异性嗜碱性粒细胞趋化因子的释放有关,在激素依赖性哮喘患者气道中这种表现有所增强。除了肥大细胞,嗜碱性粒细胞是另外一种可以储存并大量释放组胺的细胞。肥大细胞不仅释放组胺还同时释放类蛋白酶,而嗜碱性粒细胞不合成类蛋白酶,在迟发相过敏性炎症反应中组胺和LTC4继发性上升,而不是PGD2或类胰蛋白酶,提示它们来自嗜碱性粒细胞而不是肥大细胞。嗜碱性粒细胞在哮喘中的病理生理作用还不十分清楚,对嗜碱性粒细胞作为强力的细胞因子来源(IL-4和IL-13)的认识将激起对这种细胞的极大兴趣。

(四)肥大细胞

在支气管黏膜中,作为IgE高亲和受体(FcεRI)的主要细胞膜位点,肥大细胞在哮喘的症状学和病理生理学中吸引了相当大的注意力。肥大细胞来源于骨髓多能干细胞,与嗜碱性粒细胞相似,肥大细胞最初以异染性为特点,这些细胞离开骨髓时是不成熟的前体细胞,进入血液循环,再到达组织,最后在优势细胞因子环境中分化成熟。尽管前体细胞不表达FcεRI受体,但可以凭借细胞表面表达CD34分子和原癌基因(c-kit)免疫反应阳性从外周循环中分离出来。从蛋白多糖种类和染色表现的不同这一意义上讲,肥大细胞具有不同的细胞表型。黏膜肥大细胞(MC T)分泌类胰蛋白酶,在功能上与免疫系统和宿主防御功能有关。结缔组织肥大细胞(MC TC)含有类胰蛋白酶和糜蛋白酶,但不受免疫因子调控,可能与纤维化反应和血管生成有关。所有肥大细胞具有表达FcεRI受体的能力,这种受体与Ig E分子的Fc蛋白具有高亲和性,当IgE分子交联后触发肥大细胞脱颗粒并释放组胺、脂类介质、蛋白酶和肝素,其他的刺激如神经肽、过敏毒素等可激活肥大细胞。早期有研究表明哮喘气道黏膜肥大细胞数目没有增多,然而越来越多的研究显示哮喘气道黏膜肥大细胞增生,更精细的比较表明哮喘黏膜下层黏液腺及气道平滑肌内存在肥大细胞增多。无论这类细胞是否增加,肥大细胞持续脱颗粒是哮喘黏膜的特征之一。BA L F中组胺、类胰蛋白酶和L T E4水平的持续增高也反应这一现象。

肥大细胞表面高度表达FcεRI受体,该受体与Ig E交联,迅速引发脱颗粒反应,释放组胺、PGD2和L TC4等物质,这些介质使气道平滑肌收缩、黏膜分泌、黏膜水肿和血管通透性增高。嗜碱性粒细胞、嗜酸性粒细胞、中性粒细胞、树突状细胞、上皮细胞和单核巨噬细胞也表达FcεRI受体,也可能在哮喘中发挥作用。但哮喘患者BA LF或肺组织中几乎很少发现嗜碱性粒细胞的存在。单核巨噬细胞和嗜酸性粒细胞只在寄生虫感染情况下表达FcεRI受体,而且在哮喘气道组织中的嗜酸性粒细胞未发现表达FcεRI受体的证据。树突状细胞在哮喘中虽然表达FcεRI受体,但肥大细胞数量约是树突状细胞的6.5倍。近来有研究发现哮喘外周血中性粒细胞表达FcεRI受体,可能通过促进IL-8释放参与哮喘慢性炎症反应。因此尽管发现多种细胞表达FcεRI受体,肥大细胞被认为是哮喘速发相反应的主要效应细胞。与之相反,肥大细胞在哮喘迟发相反应中的作用存在争议。在动物实验中一些研究发现转基因肥大细胞缺失小鼠与过敏原激发后肺部嗜酸性粒细胞浸润和气道高反应缺乏相关性,而另一些研究则得出相反的结论。人体研究发现无论成人还是儿童哮喘,肺部肥大细胞数量增加并与气道高反应相关。支气管活检发现哮喘患者肥大细胞脱颗粒现象较非哮喘个体明显增强并且是持续性的。另外发现过敏原激发后无论是速发相还是迟发相反应期,PGD2水平均上升,因此肥大细胞脱颗粒并不仅仅发生于速发相反应期。研究还发现肥大细胞参与非Ig E介导的哮喘发作如运动性哮喘和阿司匹林敏感性哮喘。总之,尽管肥大细胞在迟发相反应中的作用还存在争议,但越来越多的证据表明肥大细胞参与迟发相反应或哮喘慢性状态,肥大细胞的作用即使不是决定性的,也是相当重要的。

由于释放促炎介质,肥大细胞被看成是哮喘患者气道内细胞因子的来源之一。肥大细胞最初(1991年)被认为是一种能够分泌免疫调节因子的细胞,这一功能以前被认为仅限于T淋巴细胞。结缔组织或黏膜肥大细胞产生的细胞因子种类非常庞大,包括Th1型细胞因子(如IFN-γ,IL-12)和Th2型细胞因子(如IL-4,IL-5,IL-13)。在哮喘的支气管黏膜,并不是所有的细胞因子都由肥大细胞产生,这提示肥大细胞产生的细胞因子谱是有限的。然而气道内肥大细胞产生的IL-4,IL-5被认为与哮喘慢性炎症反应有关。

(五)中性粒细胞

在骨髓基质产生的IL-3,GM-CSF和G-CSF的作用下,骨髓中中性粒细胞祖细胞分化生成中性粒细胞。与细菌防御功能相一致,中性粒细胞含有大量不同的颗粒,颗粒中含有大量蛋白酶、水解酶、杀菌性蛋白(包括髓过氧化物酶)和其他酶。颗粒中物质在组织中的释放促进中性粒细胞快速移行到细菌入侵的部位,与巨噬细胞一起有效发挥杀菌作用。成熟的中性粒细胞存在于血循环中,半衰期约为6h。大量中性粒细胞移居在肺部血管内,形成微生物入侵时,中性粒细胞可迅速募集到肺组织内的细胞池。实际上中性粒细胞是最早对炎症组织释放的TNFα和IL-1发生反应并募集到感染或损伤组织中的细胞。由于中性粒细胞具有大量细胞毒性物质和促炎因子,当中性粒细胞大量聚集情况下,中性粒细胞的激活对宿主是有害的,可产生广泛的组织损伤。中性粒细胞也可产生促炎因子(TNFα,IL-1,IL-6),造血因子(IL-3,GM-CSF,G-CSF)和趋化因子(IL-8),这些因子可以招募更多的炎症细胞并引起相应的免疫反应。

对无症状哮喘或轻、中度哮喘肺部局部炎症反应的研究显示,总体上中性粒细胞在哮喘中无明显作用,中性粒细胞不是过敏性哮喘肺部炎症反应的恒定特征。但是中性粒细胞是哮喘急性发作导致死亡的病人肺部的主要特征,在重症哮喘的气道也会增高。在这些个体,中性粒细胞弹性蛋白酶和IL-8明显增加,提示通过细胞因子网络中性粒细胞被激活并发生聚集。中性粒细胞在这些患者肺部的出现提示可能合并细菌感染,但病原培养常常阴性。

(六)B淋巴细胞

B淋巴细胞是淋巴细胞中产生抗原特异性免疫球蛋白的亚型。B细胞的活化、增殖、分泌免疫球蛋白以及与CD40-CD40配体的相互作用主要依赖T细胞的作用。未成熟的B细胞表面表达与外来抗原结合力较低的IgM,在T淋巴细胞和释放到黏膜中的的细胞因子的作用下,B细胞内免疫球蛋白合酶亚型发生转换,以利于IgG,IgA或IgE产生。在遗传性过敏症患者,IL-4和IL-13的优势表达导致抗原特异性IgE的持续表达。这些游离的IgE分子结合到肥大细胞和嗜碱性粒细胞表面的IgE高亲和受体,当抗原与这些IgE分子发生交联反应,启动炎症介质释放的级联反应。B淋巴细胞的另一个功能就是可作为抗原呈递细胞,这在哮喘的发病机制中可能占有重要作用。B细胞表面有IgE低亲和力受体(CD23),可能通过这些受体将抗原呈递给T细胞。关于IgE转换通路的最新研究表明,主要是对B细胞表面的细胞标志CD80(B7-1)和CD86(B7-2)的信号识别,这些标记物是T细胞表面CD28/CTLA-4的对应配体。通过IL-4/IL-13和CD40激活B细胞,使B细胞表面CD80和CD86表达上调。CD86的表达有利于与CD23-CD21配对,从而加强对B细胞的刺激,并增加IgE产生。尽管诱发IgE合成的主要因子是IL-4和IL-13,其他能促进IgE合成的因子包括IL-2,IL-5,IL-6和T NFα。而IFN-γ,IFN-α,TGFβ,IL-8,IL-10和IL-12通过抑制B细胞过度表达IgE调节IgE产量。

(七)上皮细胞

在研究哮喘患者肺部浸润的炎症细胞的同时,上皮细胞作为这些炎症网络的主要调节者显现出来。上皮细胞形成气道黏膜主动抵抗各种外来抗原的第一道防线,这与以往认为上皮细胞作为潜在的有毒制剂的被动屏障有很大区别。作为强力的促炎介质来源,上皮细胞具有改变支气管张力、气道反应性、炎症细胞激活和募集的能力。气道上皮细胞产生的促炎因子范围包括脂质介质(前列腺素、白三烯、羟化廿碳四烯酸和血小板激活因子)、一氧化氮、活性氧、细胞因子和趋化因子。

尸检表明,死于哮喘的患者以气道上皮细胞脱落以及基层上皮细胞裸露为特征,这些脱落的上皮细胞是闭塞气道的分泌物的组成部分。经纤支镜支气管活检也报道有同样的变化,这些变化甚至出现在临床症状稳定的哮喘患者。约50%轻度、几乎所有的重度以及新确诊的哮喘患者存在上皮细胞脱落,这提示哮喘早期存在隐匿的炎症反应,导致黏膜损伤和重塑。作为气道损伤修复的标志,上皮损伤区域CD44和表皮生长因子受体(EGFR)表达的增多证实哮喘气道上皮确实存在损伤修复的过程。上皮细胞脱落与气道反应性的增高和临床症状的恶化相关,在这些研究中,大量精力被投放在诱发上皮细胞脱落以及脱落后的反应上。嗜酸性粒细胞衍生的MBP被认为对上皮细胞有毒性作用,采用鞣酸损害上皮细胞的研究支持细胞毒性机制。这些研究发现哮喘和非哮喘的上皮细胞染色的程度没有区别,这提示可能存在粒细胞介导的细胞毒性以外的机制导致哮喘患者的上皮细胞损害,这种损害包括细胞间黏附因子的丢失。

上皮细胞产生各种介质,特别是细胞因子和趋化因子,明显提示上皮细胞处于逐渐激活状态。哮喘表达的趋化因子与上皮细胞之间一直存在显著相关性,至今已发现的趋化因子有R A N TES,嗜酸细胞活化趋化因子(eotaxin),IL-8,IL-16,MCP-1,M CP-3,MCP-4和MIP-1α。这些趋化因子可能建立一种浓度梯度吸引白细胞外溢。一旦白细胞到达上皮细胞下区,这种因素也可能促进白细胞向抗原沉积的部位移动并促使它们最终进入气道腔。在过敏原诱发的哮喘模型中,只有在气道上皮中发现嗜酸性粒细胞时气道反应才增加,而MCP-4与嗜酸性粒细胞向气道聚集有关。上皮细胞分泌的ET-1和TGFβ能促进肌成纤维细胞合成前胶原参与哮喘气道重塑过程,上皮-间质细胞通路是哮喘气道炎症反应的另一个方面。

(八)结构细胞

哮喘患者包括轻症患者的气道病理检查经常报道存在气道结构的改变,如平滑肌肥大或增生,这提示气道重塑是哮喘病理学的特性。在大分子水平,这些气道结构的改变涉及Ⅰ、Ⅲ和Ⅴ型胶原的沉积,基膜下纤维连接蛋白的沉积,同时网状层的密度和深度也增加。重塑伴随着成纤维细胞表型的改变,成纤维细胞转化为类似一种含有α肌动蛋白的有收缩性的细胞,最后变为肌成纤维细胞。尽管推测气道结构的改变与持续性气道高反应性的形成和气流阻塞的慢性改变有关,但具体通过什么机制还不清楚。另外,炎症刺激诱发平滑肌和(或)肌成纤维细胞增生还需进一步阐明。与这些结构变化可能有关并在哮喘患者支气管黏膜中上调的因子包括TGFβ,IL-11和PGDF。嗜酸性粒细胞是哮喘气道中促纤维化细胞因子的最主要来源,被认为是哮喘炎症和气道重塑的主要连接纽带。PDGF能够刺激组织结构细胞(structural cells),包括成纤维细胞、上皮细胞和血管平滑肌细胞增生,这种细胞因子被认为在数种慢性肺部疾病中导致肺功能的改变。同样,TGFβ促进成纤维细胞和平滑肌细胞增生,诱导基质蛋白合成并被认为与损伤修复过程中组织重塑有关。IL-11是最近被提到的一种细胞因子,在转基因小鼠气道过度表达时,可使哮喘的肺发生多种结构变化。哮喘中另一种嗜酸性粒细胞衍生的细胞因子发生上调并对结构改变起作用的是GM-CSF。在GM-CSF基因转染大鼠,这种细胞因子的过度表达与不可逆的纤维化反应有关,提示这种嗜酸性粒细胞衍生的细胞因子有能力发动结构重建。所有这些细胞因子在促进结构改变方面作用的大小以及嗜酸性粒细胞是否起关键作用还有待进一步研究。

五、外源性与内源性哮喘

虽然过敏性和内源性哮喘可能存在共同的发病机制,最近大量研究表明这两种哮喘存在若干免疫学差别。激活的T细胞表达CD25分子,在内源性哮喘,即使无症状患者,循环中CD25+T细胞包括CD4+和CD8+细胞。而过敏性哮喘CD25+T细胞仅限于循环中CD4+细胞。过敏性哮喘和内源性哮喘T细胞表型也不同,过敏性哮喘主要表达Th2型细胞因子(IL-4,IL-5),内源性哮喘气道Th1型细胞因子IL-2和IL-5水平显著增高。IL-4水平无增加可解释为什么内源性哮喘患者循环IgE水平保持正常滴度。在内源性哮喘T细胞持续激活及IL-4的缺乏与该型哮喘的临床表现相一致,但最近的研究显示内源性哮喘的上皮细胞层IL-4水平增高。在外源性和内源性哮喘时IL-4受体表达均增加,除了后者IgE水平没有升高外,两者可能存在相似的机制。IL-4是否有助于局部IgE的合成还需进一步评定。内源性和外源性哮喘时巨噬细胞功能也有差别。内源性哮喘气道GM-CSF mRNA和GM-CSF受体mRNA阳性细胞较外源性哮喘增多。大部分GM-CSF受体mRNA阳性细胞CD68阳性提示内源性哮喘气道黏膜存在激活的巨噬细胞。

六、小结

在过去的20年里,对哮喘的病理生理机制的认识,特别是对细胞因子及其在局部免疫反应中调节作用的认识有了很大的进步。掌握这些知识可能为开发新的治疗途径,如细胞因子或趋化因子受体。嗜酸性粒细胞在哮喘的炎症反应和结构改变中占有特殊的地位,这些细胞可能存在不同的亚型,引起哮喘免疫反应和生理功能的异常。

(姜红妮 瞿介明

参考文献

1.Castro M,Chaplin DD,Walter MJ,et al.Could asthma be worsened by stimulating the T-helper type 1 immune response?Am J Respir Cell Mol Biol,2000,22:143~6

2.American Thoracic Society.Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease(COPD)and asthma.Am Rev Respir Dis,1987,136:225~44

3.Gibson PG,Dolovich J,Denburg J,et al.Chronic cough:eosinophilic bronchitis without asthma.Lancet,1989,1:1 346~1 348

4.Platts-Mills T A,Woodfolk JA.Rise in asthma cases.Science,1997,278:1 001

5.Peat JK.The epidemiology of asthma.Curr Opin Pulm Med,1996,2:7~15

6.Sears M R.Epidemiology of childhood asthima.Lancet,1997,350:1 015~1 020

7.Dowse GK,Turner KJ,Stewark GA,et al.The association between Dermatophagoides mites and the increasing prevalence of asthma in village communities within the Papua New Guinea highlands.J Allergy Clin Immunol,1985,75:75~83

8.Sporik R,Holgate ST,Platts-Mills T A,et al.Exposure to house-dust mite allergen(Der p I)and the development of asthma in childhood.A prospective study.N Engl J Med,1990,323:502~507

9.Sigurs N,Bjarnason R,Sigurbergsson F,et al.Asthma and immunoglobulin E antibodies after respiratory syncytial virus bronchiolitis:a prospective cohort study with matched controls.Pediatrics,1995,95:500~505

10.Cameron L A,Durham SR,Jacobson M R,et al.Expression of IL-4,Cepsilon RN A,and Jepsilon RN A in the nasal mucosa of patients with seasonal rhinitis:effect of topical corticosteroids.J Allergy Clin Immunol,1998,101:330~336

11.Humbert M,Durham SR,Ying S,et al.IL-4 and IL-5 mRN A and protein in bronchial biopsies from patients with atopic and nonatopic asthma:evidence against‘intrinsic’asthma bein a distinct immunopathologic entity.Am J Respir Crit Care Med,1996,154:1 497~1 504

12.Frew A,Chan H,Dryden P,et al.Immunologic studies of the mechanisms of occupational asthma caused by western red cedar.J Allergy Clin Immunol,1993,92:466~478

13.Huber H L,Koessler K K.The pathology of bronchial asthma.Arch Intern Med,1992,30:689

14.Dunnill MS.The pathology of asthma,with special reference to changes in the bronchial mucosa.J Clin Pathol,1960,13:27~33

15.Laitinen L A,Heino M,Laitinen A,et al.Damage of the airway epithelium and bronchial reactivity in patients with asthma.Am Rev Respir Dis,1985,131:599~606

16.Roche WR,Beasley R,Williams JH,et al.Subepithelial fibrosis in the bronchi of asthmatics.Lancet,1989,1:520~524

17.Beasley R,Roche WR,Roberts JA,et al.Cellular events in the bronchi in mild asthma and after bronchial provocation.Am Rev Respir Dis,1989,139:806~817

18.Jeffery PK,Wardlaw AJ,Nelson FC,et al.Bronchial biopsies in asthma.An ultra-structural,quantitative study and correlation with hyperreaedvity.Am Rev Respir Dis,1989,140:1 745~1 753

19.Azzawi M,Bradley B,Jeffery PK,et al.Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma.Am Rev Respir Dis,1990,142(6 Pt 1):1 407~1 413

20.Gonzalez MC,Diaz P,Galleguillos FR,et al.Allergen-induced recruitment of bronchoalveolar helper(OK T4)and suppressor(OK T8)T-cells in asthma.Relative increases in OK T8 cells in single early responders.Am Rev Respir Dis,1987,136:600~604

21.Bradley BL,Azzawi M,Jacobson M,et al.Eosinophils,T-lymphocytes,mast cells,neutrophils,and macrophages in bronchial biopsy specimens from atopic subjects with asthma:comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness.J Allergy Clin Immunol,1991,88:661~674

22.Hamid Q,Barkans J,Robinson DS,et al.Coexpression of CD25and CD3in atopic allergy and asthma.Immunol,1992,75:659~663

23.Corrigan CJ,Hartnell A,Kay AB.T lymphocyte activation in acute severe asthma.Lancet,1988,1:1 129~1 132

24.Robinson DS,Ying S,Bentley AM,et al.Relationships among numbers of bronchoalveolar lavage cells expressing messenger ribonucleic acid for cytokines,asthma symptoms,and airway methacholine responsiveness in atopic asthma.J Allergy Clin Immunol,1993,92:397~403

25.Corrigan CJ,Haczku A,Gemou-Engesaeth V,et al.CD4T-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5.Effect of glucocorticoid therapy.Am Rev Respir Dis,1993,147:540~547

26.Robinson D,Hamid Q,Ying S,et al.Prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin-4,interleukin-5,and interferon-gamma cytokine gene expression.Am Rev Respir Dis,1993,148:401~406

27.Walker C,Kaegi MK,Braun P,et al.Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity.J Allergy Clin Immunol,1991,88:935~942

28.Fukaura H,Kent SC,Pietrusewicz MJ,et al.Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-betal-secreting Th3Tcells by oral administration of myelin in multiple sclerosis patients.J Clin Invest,1996,98:70~77

29.Mosmann TR,Cherwinski H,Bond MW,et al.Two types of murine helper T cell clone.I.Definition according to profiles of lymphokine activities and secreted proteins.J Immunol,1986,136:2 348~2 357

30.Cohen S.Cytokine profile data.Immunol Today,2000,21:199~200

31.Mosmann TR,Coffman RL.Th1and Th2cells:different patterns of lymphokine secretion lead to different functional properties.Annu Rev Immunol,1989,7:145~173

32.Williams ME,Montenegro S,Domingues AL,et al.Leukocytes of patients with Schistosoma mansoni respond with a Th2pattern of cytokine production to mitogen or egg antigens but with a Th0pattern to worm antigens.J Infect Dis,1994,170:946~954

33.Robinson DS,Hamid Q,Ying S,et al.Predominant Th2-like bronchoalveolar T-lymphocyte population in atopic asthma.N Engl J Med,1992,326:298~304

34.Robinson D,Hamid Q,Bentley A,et al.Activation of CD4+T cells,increased Th2-type cytokine mRNA expression and eosinophil recruitment in bronchoalveolar lavage after allergen inhalation challenge in patients with atopic asthma.J Allergy Clin Immunol,1993,92:313~324

35.Bentley AM,Meng Q,Robinson DS,et al.Increases in activated T lymphocytes,eosinophils and cytokine mRNA expression for interleukin-5and granulocyte-macrophage colony-stimulating factor in bronchial biopsies after allergen inhalation challeng in atopic asthmatics.Am J Respir Cell Mol Biol,1993,8:35~42

36.Clutterbuck EJ,Hirst EMA,Sanderson CJ.Human interleukin-5(IL-5)regulates the production of eosinophils in human bone marrow cultures:comparison and interaction with IL-1,IL-3,IL-6and GM-CSF.Blood,1989,73:1 504~1 512

37.Minshall EM,Schleimer R,Cameron L,et al.Interleukin-5expression in the bone marrow of sensitizes Balb/c mice after allergen challenge.Am J Respir Crit Care Med,1998,158:951~957

38.Corrigan CJ,Kay AB.CD4Tlymphocyte activation in acute severe asthma.Int Arch Allergy Appl Immunol,1991,94:270~271

39.Cembrzynska-Nowak M,Szklarz E,Inglot AD,et al.Elevated release of tumor necrosis factor-alpha and interferon-gamma by bronchoalveolar leukocytes from patients with bronchial asthma.Am Rev Respir Dis,1993,147:291~295

40.Krug N,Madden J,Redington AE,et al.T-cell cytokine profile evaluated at the single cell level in BA L and blood in allergic asthma.Am J Respir Cell Mol Biol,1996,14:319~326

41.Magnan AO,Mely LG,Camilla CA,et al.Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma.Increased IFN-gamma-producing CD8+T cells in asthma.Am J Respir Crit Care Med,2000,161:1 790~1 796

42.Salvi SS,Baub KS,Holgate ST.Is asthma really due to a polarized T cell response toward a helper T cell type 2phenotype?Am J Respir Crit Care Med,2001,164:1 343~1 346

43.Brown V,Warke TJ,Shields M D,et al.T cell cytokine profiles in childhood asthma.Thorax,2003,58:311~316

44.Shalit M,Sekhsaria S,Malech H L.Modulation of growth and differentiation of eosinophils from human peripheral blood CD34+cells by IL-5 and other growth factors.Cell Immunol,1995,160:50~57

45.Dubucquoi S,Desreumaux P,Janin A,et al.Interleukin 5 synthesis by eosinophils:association with granules and immunoglobulin-dependent secretion.J Exp Med,1994,179:703~708

46.Lamkhioued B,Gounni AS,Aldebert D,et al.Synthesis of type 1(IFN gamma)and type 2(IL-4,IL-5 and IL-10)cytokines by human eosinophils.Ann N Y Acad Sci,1996,796:203~208

47.Kita H,Ohnishe T,Okubo Y,et al.GM-CSF and IL-3 release from human peripheral blood eosinophils and neutrohils.J Exp Med,1991,174:749~752

48.Levi-Schaffer F,Barkans J,Newman T M,et al.Identification of interleukin-2 in human peripheral blood eosinophils.Immunology,1996,87:155~161

49.Ohno I,Nitta Y,Yamauchi K,et al.Eosinophils as a potential source of platelet-derived growth factor B-chain in nasal polyposis and bronchial asthma.Am J Respir Cell Mol Biol,1995,13:639~647

50.Hamid Q,Barkans J,Meng Q,et al.Human eosinophils synthesize and secrete interleukin-6,in vitro.Blood,1992,80:1 496~1 501

51.Ying S,Meng Q,Taborda-Barata L,et al.Human eosinophils express messenger RN A encoding RA N TES and store and release biologically active RA N TES protein.Eur J Immunol,1996,26:70~76

52.Wong DT,Elovic A,Matossian K,et al.Eosinophils from patients with blood eosinophllia express transforming growth factor beta 1.Blood,1991,78:2 702~2 707

53.Grewe M,Czech W,Morita A,et al.Human eosinophils produce biologically active IL-12:implications for control of T cell responses.J Immunol,1998,161:415~420

54.Minshall E M,Chakir J,Laviolette M,et al.IL-11 expression is increased in severe asthma:association with epithelial cells and eosinophils.J Allergy Clin Immunol,2000,105:232~238

55.Kirby JG,Hargreave FE,Gleich GJ,et al.Bronchoalveolar cell profiles of asthmatic and nonasthmatic subjects.Am Rev Respir Dis,1987,136:379~383

56.Wardlaw AJ,Dunnette S,Gleich GJ,et al.Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma.Relationship to bronchial hyperreactivity.Am Rev Respir Dis,1988,137:62~89

57.Bentley A M,Menz G,Storz C,et al.Identification of T lymphocytes,macrophages and activated eosinophils in the bronchial mucosa in intrinsic asthma.Relationship to bronchial responsiveness.Am Rev Respir Dis,1992,146:500~506

58.Bentley AM,Maestrelli P,Saetta M,et al.Activated T-lymphocytes and eosinophils in the bronchial mucosa in isocyanate-induced asthma.J Allergy Clin Immunol,1992,89:821~829

59.Oehling AG Jr,Walker C,Virchow JC,et al.Correlation between blood eosinophils,T-helper cell activity markers and pulmonary function inpatients with allergic and intrinsic asthma.J Investig Allergol Clin Immunol,1992,2:295~299

60.Fukuda T,Dunnutte SL,Reed CE,et al.Increased numbers of hypodense eosinophils in the blood of patients with bronchial asthma.Am Rev Respir Dis,1985,132:981~985

61.Kioprogge E,de Leeuw AJ,de Monchy JG,et al.Hypodense eosinophilic granulocytes in normal individuals and patients with asthma:generation of hypodense cell populations in vitro.J Allergy Clin Immunol,1989,83(2Pt 1):393~400

62.Moens MM,Mertens AV,De Clerck LS,et al.Are hypodense eosinophils in children activated or immature?.Pdiatr Allergy Immunol,1993,4:89~92

63.Hamid Q,Song Y,Kotsimbos TC,et al.Inflammation of small airways in asthma.J Allergy Clin Immunol,1997,100:44~51

64.Haley M,Sunday ME,Wiggs BR,et al.Inflammatory cell distribution within and along asthmatic airways.Am J Respir Crit Care Med,1998,158:565~572

65.Djukanovic R,Wilson JW,Britten KM,et al.Quantitation of mast cells and eosinophils in the bronchial mucosa of symptomatic atopic asthmatics and healthy control subjects using immunohistochemistry.Am Rev Respir Dis,1990,142:863~871

66.Frigas E,Gleich GJ.The eosinophil and the patho-physiology of asthma.J Allergy Clin Immunol,1986,77:527~537

67.Busse WW,Nagata M,Sedgwick JB.Characteristics of airway eosinophils.Eur Respir J Suppl,1996,22:S132~135

68.Moqbel R,Barkans J,Bradley BL,et al.Application of monoclonal antibodies against major basic protein(BMK-13)and eosinophil cationic protein(EG1and EG2)for quantifying eosinophils in bronchial biopsies from atopic asthma.Clin Exp Allergy,1992,22:265~273

69.Minshall EM,Leung DY,Martin RJ,et al.Eosinophil-associated TGFβmRNA expression and airways fibrosis in bronchial asthma.Am J Respir Cell Mol Biol,1997,17:326~333

70.Yasruel Z,Humbert M,Kotsimbos TC,et al.Membrane-bound and soluble alpha IL-5receptor mRNA in the brochial mucosa of atopic and nonatopic asthmatics.Am J Respir Critical Care Med,1997,155:1 413~1 418

71.Frigas E,Loegering DA,Solley GO,et al.Elevated levels of the eosinophil granule major basic protein in the sputum of patients with bronchial asthma.Mayo Clin Proc,1981,56:345~353

72.Filiey WV,Holley KE,Kephart GM,et al.Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma.Lancet,1982,2:11~16

73.Coyle AJ,Mitzner W,Irvin CG.Cationic proteins alter smooth muscle function by an epithelium-dependent mechanism.J Appl Physiol,1993,74:1 761~1 768

74.Coyle AJ,Uchida D,Ackerman SJ,et al.Roe of cationic proteins in the airway.Hyper-responsiveness due to airway inflammation.Am J Respir Crit Med,1994,150(Pt 2):S63~71

75.Jacoby DB,Gleich GJ,Fryer AD.Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2receptor.J Clin Invest,1993,91:1 314~1 318

76.Metzger WJ,Zavala D,Richerson HB,et al.Local allergen challenge and bronchoalveolar lavage of allergic

asthmatic lungs.Description of the model and local airway inflammation.Am Rev Respir Dis,1987,135:433~440

77.Lam S,LeRiche J,Phillips D,et al.Cellular and protein changes in bronchial lavage fluid after late asthmatic reaction in patient with red cedar asthma.J Allergy Clin Immunol,1987,80:44~50

78.Fabbri L M,Boschetto P,Zocca E,et al.Bronchoalveolar neutrophilia during late-face asthmatic reactions induced by toluene diisocyanate.Am Rev Respir Dis,1987,136:36~42

79.Rossi GA,Crimi E,Lantero S,et al.Late-phase asthmatic reaction to inhaled allergen is associated with early recruitment of eosinophils in the airways.Am Rev Respir Dis,1991,144:379~383

80.Albers R,Kauffman H F,Vrugt B,et al.Allergen-induced recruitment of inflammatory cells in lavage 3 and 24 h after challenge in allergic asthmatic lungs.Chest,1993,103:1 178~1 184

81.de Monchy JCR,Kauffman H F,Venge P,et al.Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions.Am Rev Respir Dis,1985,131:373~376

82.Durham SR,Kay AB.Eosinophils,bronchial hyperreactivity and late-phase asthmatic reactions.Clin Allergy,1985,15:411~418

83.Bentley A M,Hamid Q,Robinson DS,et al.Prednisolone treatment in asthma.Reduction in the numbers of eosinophils,T cells,tryptase-only positive mast cells,and modulation of IL-4,IL-5,and interferon-gamma cytokine gene expression within the bronchial mucosa.Am J Respir Crit Care Med,1996,153:551~556

84.Eidelman DH,Minshall E,Dandurand RJ,et al.Evidence for major basic protein immunoreactivity and interleukin 5 gene activation during the late phase response in explanted airway.Am J Respir Cell Mol Biol,1996,15:582~589

85.Sehmi R,Howie K,Sutherland DR,et al.Increased levels of CD34+hemopoietic progenitor cells in atopic subjects.Am J Respir Cell Mol Biol,1996,15:645~655

86.Gibson PG,Dolovich J,Girgis-Gabardo A,et al.The inflammatory response in asthma exacerbation:changes in circulating eosinophils,basophils and their progenitors.Clin Exp Allergy,1990,20:661~668

87.Gibson PG,Manning PJ,O’Byrne PM,et al.Allergen-induced asthmatic responses.Relationship between increase in airway responsiveness and increases in circulating eosinophils basophils,and their progenitors.Am Rev Respir Dis,1991,143:331~335

88.Wood LJ,Inman M D,Watson R M,et al.Changes in bone marrow inflammatory cell progenitors after inhaled allergen in asthmatic subjects.Am J Respir Crit Care Med,1998,157:99~105

89.Robinson DS,Damia R,Zeibecoglou K,et al.CD34+/interleukin-5Ralpha messenger RN A+cells in the bronchial mucosa.Am J Respir Cell Mol Biol,1999,20:9~13

90.Lacoste JY,Bousquet J,Chanez P,et al.Eosinophilic and neutrophilic inflammation in asthma,chronic bronchitis and chronic obstructive pulmonary disease.J Allergy Clin Immunol,1993,92:537~548

91.Azzawi M,Johnston PW,Majumdar S,et al.T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis.Am Rev Respir Dis,1992,145:1 477~1 482

92.Grantham JG,Meadows JA,Gleich GJ.Chronic eosinophilic pneumonia.Evidence for eosinophil degranulation and release of major basic protein.Am J Med,1986,80:89~94

93.Denburg JA,Telizyn S.Messner H,et al.Heterogeneity of human peripheral blood eosinophil-type colonies:evidence for a common basophil-eosinophil progenitor.Blood,1985,66:312~318

94.Kepley CL,Pfeiffer J,Wilson BW,et al.Identification and characterization of umbilical cord blood-derived human basophils.J Leukocyte Biol,1998,64:474~483

95.Denburg JA,Silver JE,Abrams JS.Interleukin-5is a human basophilopoietin:induction of histamine content and basophilic differentiation of HL-60cells and of peripheral blood basophil-eosinophil progenitors.Blood,1991,77:1 462~1 468

96.Kirby JG,Hargreave FE,Gleich GJ,et al.Bronchoalveolar cell profiles of asthmatics and nonasthmatic subjects.Am Rev Respir Dis,1987,136:379~383

97.Liu MC,Hubbard WC,Proud D,et al.Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics:cellular,mediator,and permeability changes.Am Rev Respir Dis,1991,144:51~58

98.Wardlaw AJ,Dunnette S,Gleich GJ,et al.Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma:relationship to bronchial hyperreactivity.Am Rev Respir Dis,1988,137:62~69

99.Macfarlane AJ,Kon OM,Smith SJ,et al.Basophils,eosinophils and mast cells in atopic and nonatopic asthma and in late-phase allergic reactions in the lung and skin.J Allergy Clin Immunol,2000,105:99~107

100.Foresi A,Leone C,Pelucchi A,et al.Eosinophils,mast cells,and basophils in induced sputum from patients with seasonal allergic rhinitis and perennial asthma:relationship to methacholine responsiveness.J Allergy Clin Immunol,1997,100:58~64

101.Kepley CL,McFeeley PJ,Oliver JM,et al.Immunohistochemical detection of human basophils in postmortem cases of fatal asthma.Am J Respir Crit Care Med,2001,164:1 053~1 058

102.Maruyama N,Tamura G,Aizawa T,et al.Accumulation of basophils and their chemotactic activity in the airways during natural airway narrowing in asthmatic individuals.Am J Respir Crit Care Med,1994,150:1 086~1 093

103.Bascom R,Wachs M,Naclerio RM,et al.Basophil influx occurs after nasal antigen challenge:effects of topical corticosteroid pretreatment.J Allergy Clin Immunol,1988,81:580~589

104.Naclerio RM,Proud D,Togias AG,et al.Inflammatory mediators in late antigen-induced rhinitis.N Engl J Med,1985,313:65~70

105.Shalit M,Schwartz LB,Golzar N,et al.Release of histamine and tryptase in vivo after prolonged cutaneous challenge with allergen in humans.J Immunol,1988,141:821~826

106.Gibbs BF,Haas H,Falcone FH,et al.Purified human peripheral blood basophils release interleukin-4 following immunological activation.Eur J Immunol,1996,26:2 493~2 498

107.Li H,Sim TC,Alam R.IL-13released by and localized in human basophils.J Immunol,1996,156:4 833~4 838

108.Ashman RI,Jarboe DL,Conrad DH,et al.The mast cell-committed progenitor.In vitro generation of committed progenitors from bone marrow.J Immunol,1991,146:211~216

109.Irani AM,Bradford TR,Kepley CL,et al.Detection of MCTand MCTCtypes of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies.J Histochem Cytochem,1989,37:1 509~1 515

110.Marks RM,Roche WR,Czerniecki M,et al.Mast cell granules cause proliferation of human microvascular endothelial cells.Lab Invest,1986,55:289~294

111.Sorbo J,Jakobsson A,Norrby K.Mast-cell histamine is angiogenic through receptors for histamine1and histamine2.Int J Exp Pathol,1994,75:43~50

112.Bradley BL,Azzawi M,Jacobson M,et al.Eosinophils,T-lymphocytes,mast cells,neutrophils and mac-

rophages in bronchial biopsy specimens from atopic subjects with asthma:comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness.J Allergy Clin Immunol,1991,88:661~674

113.Gibson PG,Allen CJ,Yang JP,et al.Intraepithelial mast cells in allergic and nonallergic asthma.Assessment using bronchial brushings.Am Rev Respir Dis,1993,148:80~86

114.Koshino T,Arai Y,Miyamoto Y,et al.Airway basophil and mast cell density in patients with bronchial asthma:relationship to bronchial hyperresponsiveness.J Asthma,1996,33:89~95

115.Macfarlane AJ,Kon OM,Smith SJ,et al.Basophils,eosinophils,and mast cells in atopic and nonatopic asthma and in late-phase allergic reactions in the lung and skin.J Allergy Clin Immunol,2000,105:99~107

116.Carroll NG,Mutavdzic S,James A L.Increased mast cells and neutrophils in submucosal mucous glands and mucus plugging in patients with asthma.Thorax,2002,57:677~682

117.Brightling CE,Bradding P,Symon FA,et al.Mast-cell infiltration of airway smooth muscle in asthma.N Engl J Med,2002,346:1 699~1 705

118.Wenzel SE,Fowler A A,Schwartz LB.Activation of pulmonary mast cells by bronchoalveolar allergen challenge.In vivo release of histamine and tryptase in atopic subjects with and without asthma.Am Rev Respir Dis,1988,137:1 002~1 008

119.Lam S.al-Majed S,Chan H,et al.Differences in mediator release between allergic rhinitis and asthma.J Allergy Clin Immunol,1991,87:842~849

120.Jeffrey PK,Wardlaw AJ,Nelson FC,et al.Bronchial biopsies in asthma.An ultrastructural,quantitative study and correlation with hyperreactivity.Am Rev Respir Dis,1989,140:1 745~1 753

121.Djukanovic R,Lai CK,Wilson JW,et al.Bronchial mucosal manifestations of atopy:a comparison of markers of inflammation between atopic asthmatics,atopic nonasthmatics and healthy controls.Eur Respir J,1992,5:538~544

122.Pesci,A,Foresi A,Bertorelli G,et al.Histochemical characteristics and degranulation of mast cells in epithelium and lamina propria of bronchial biopsies from asthmatic and normal subjects.Am Rev Respir Dis,1993,147:684~689

123.Gounni AS,Lamkhioued B,Ochiai K,et al.High-affinity Ig E receptor on eosinophils is involved in defence against parasites.Nature,1994,367:183~186

124.Tunon-de-Lara,JM,Redington AE,Bradding P,et al.Dendritic cells in normal and asthmatic airways:expression of theαsubunit of the high affinity immunoglobulin E receptor(FcεRI~α).Clin Exp Allergy,1996,26:648~655

125.Gounni AS,Lamkhioued B,Koussih L,et al.Human neutrophils express the high-affinity receptor for immunoglobulin E(Fc epsilon RI):role in asthma.FASEB J,2001,15:940~949

126.Nogami M,Suko M,Okudaira H,et al.Experimental pulmonary eosinophilia in mice by Ascaris suum extract.Am Rev Respir Dis,1990,141:1 289~1 295

127.Brusselle GG,Kips JC,Tavernier JH,et al.Attenuation of allergic airway inflammation in IL-4 deficient mice.Clin Exp Allergy,1994,24:73~80

128.Takeda K,Hamelmann E,Joetham A,et al.Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice.J Exp Med,1997,186:449~454

129.Martin TR,Takeishi T,Howard HR,et al.Mast cell activation enhances airway hyperresponsiveness tomethacholine in the mouse.J Clin Invest,1993,91:1 176~1 182

130.Kung TT,Stelts D,Zurcher JA,et al.Mast cells modulate allergic pulmonary eosinophilia in mice.Am J Respir Cell Mol Biol,1995,12:404~409

131.Campbell E,Hogaboam C,Lincoln P,et al.Stem cell factor-induced airway hyperreactivity in allergic and normal mice.Am J Pathol,1999,154:1 259~1 265

132.Kobayashi T,Miura T,Haba T,et al.An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model.J Immunol,2000,164:3 855~3 861

133.Wardlaw AJ,Dunnette S,Gleich GJ,et al.Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma:relationship to bronchial reactivity.Am Rev Respir Dis,1988,137:62~69

134.Ferguson AC,Whitelaw M,Brown H.Correlation of bronchial eosinophil and mast cell activation with bronchial hyperresponsiveness in children with asthma.J Allergy Clin Immunol,1992,90:609~613

135.Broide DH,Gleich GH,Cuomo AJ,et al.Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway.J Allergy Clin Immunol,1991,88:637~648

136.O’Sullivan S.On the role of PGD2metabolites as markers of mast cell activation in asthma.Acta Physiol Scand,1999,166:1~74

137.Galli SJ.Complexity and redundancy in the pathogenesis of asthma:reassessing the roles of mast cells and T cells.J Exp Med,1997,186:343~347

138.Wedemeyer J,Tsai M,Galli SJ.Roles of mast cells and basophils in innate and acquired immunity.Curr Opin Immunol,2000,12:624~631

139.Galli SJ.Mast cells and basophils.Curr Opin Hematol,2000,7:32~39

140.Oliviera SHP,Hogaboam CM,Berlin A,et al.SCF~induced airway hyperreactivity is dependent on leukotriene production.Am J Physiol Lung Cell Mol Physiol,2001,280:1 242~1 249

141.Ying S,Durham SR,Corrigan CJ,et al.Phenotype of cells expressing mRNA for TH2-type(interleukin 4 and interleukin 5)and TH1-type(interleukin 2and interferon gamma)cytokines in bronchoalveolar lavage and bronchial biopsies from atopic asthmatic and normal control subjects.Am J Respir Cell Mol Biol,1995,12:477~487

142.Bradding P,Roberts JA,Britten KM,et al.Interleukin-4,5,and-6and tumor necrosis factor-alpha in normal and asthmatic airways:evidence for the human mast cell as a source of these cytokines.Am J Respir Cell Mol Biol,1994,10:471~480

143.Plaut M,Pierce JH,Watson CJ,et al.Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores.Nature,1989,339:64~67

144.Gordon JR,Burd PR,Galli SJ.Mast cells as a source of multifunctional cytokines.Immunol Today,1990,11:458~667

145.Burd PR,Thompson WC,Max EE,et al.Activated mast cells produce interleukin 13.J Exp Med,1995,181:1 373~1 380

146.Bradding P.Human mast cell cytokines.Clin Exp Allergy,1996,26:13~19

147.Carroll N,Carello S,Cooke C,et al.Airway structure and inflammatory cells in fatal attacks of asthma.Eur Respir J,1996,9:709~715

148.Sur S,Crotty TB,Kephart GM,et al.Sudden-onset fatal asthma.A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa?.Am Rev Respir Dis,1993,148:713~719

149.Wenzel SE,Szefler SJ,Leung DY,et al.Bronchoscopic evaluation of severe asthma.Persistent inflamma-

tion associated with high dose glucocorticoids.Am J Respir Crit Care Med,1997,156(3 Pt 1):737~743

150.Lamblin C,Gosset P,Tillie-Leblond I,et al.Bronchial neutrophilia in patients with noninfectious status asthmaticus.Am J Respir Crit Care Med,1998,157:394~402

151.Lamblin C,Gosset P,Tillie-Leblond I,et al.Bronchial neutrophilia in patients with noninfectious status asthmaticus.Am J Respir Crit Care Med,1998,157:394~402

152.Punnonen J,Aversa G,Cocks BG,et al.Interleukin-13 induces IL-4-independent IgG4 and Ig E synthesis and CD23 expression by human B celIs.Proc Natl Acad Sci USA,1993,90:3 730~3 734

153.Jeannin P,Delneste Y,Lecoanet-Henchoz S,et al.CD86(B7-2)on human B cells.A functional role in proliferation and selective differentiation into IgE-and IgG4-producing cells.J Biol Chem,1997,272:15 613~15 619

154.Vercelli D,Geha RS.The IgE system.Ann Allergy,1989,63:4~11

155.Pene J,Rousset F,Briere F,et al.IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons gamma and alpha and prostaglandin E2.Proc Natl Acad Sci USA,1988,85:6 880~6 884

156.Kiniwa M,Gately M,Gubler U,et al.Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes.J Clin Invest,1992,90:262~266

157.Punnonen J,de Waal Malefyt R,van Vlasselaer P,et al.IL-10 and viral IL-10 prevent IL-4-induced IgE synthesis by inhibiting the accessory cell function of monocytes.J Immunol,1993,151:1 280~1 289

158.Laitenen L A,Heino M,Laitenen A,et al.Damage of the airway epithelium and bronchial reactivity in patients with asthma.Am Rev Respir Dis,1985,131:599~606

159.Vignola A M,Chanez P,Campbell A M,et al.Airway inflammation in mild intermittent and in persistent asthma.Am J Respir Crit Care Med,1998,157:403~409

160.Laitinen L A,Laitinen A,Haahtela T.Airway mucosal inflammation even in patients with newly diagnosed asthma.Am Rev Respir Dis,1993,147:697~704

161.Lackie PM,Baker JE,Gunthert U,et al.Expression of CD44 isoforms is increased in the airway epithelium of asthmatic subjects.Am J Respir Cell Mol Biol,1997,16:14~22

162.Puddicombe SM,Polosa R,Richter A,et al.The involvement of the epidermal growth factor receptor in epithelial repair in asthma.FASEB J,2000,14:1 362~1 374

163.Davies DE,Polosa R,Puddicombe SM,et al.The epidermal growth factor receptor and its ligand family:their potential role in repair and remodeling in asthma.Allergy,1999,54:771~783

164.Frigas E,Loegering DA,Gleich GJ.Cytotoxic effects of the guinea pig eosinophil major basic protein on tracheal epithelium.Lab Invest,1980,42:35~43

165.Montefort S,Djukanovic R,Holgate ST,et al.Ciliated cell damage in the bronchial epithelium of asthmatics and non-asthmatics.Clin Exp Allergy,1993,23:185~189

166.Berkman N,Krishnan V L,Gilbey T,et al.Expression of RA N TES m RN A and protein in airways of patients with mild asthma.Am J Respir Crit Care Med,1996,154:1 804~1 811

167.Laberge S,Ernst P,Ghaffar O,et al.Increased expression of interleukin-16 in bronchial mucosa of subjects with atopic asthma.Am J Respir Cell Mol Biol,1997,17:193~202

168.Mattoli S,Marini M,Fasoli A.Expression of the potent inflammatory cytokines,GM-CSF,IL6 and IL8,in bronchial epithelial cells of asthmatic patients.Chest,1992,101(3 Suppl):27~29

169.Taha R,Minshall E M,Miotta D,et al.Eotaxin and monocyte chemotactic protein-4 mRN A expression insmall airways of asthmatic and nonasthmatic individuals.J Allergy Clin Immunol,1999,103:476~483

170.Alam R,York J,Boyars M,et al.Increased MCP-1,RANTES and MIP-1alpha in bronchoalveolar lavage fluid of allergic asthmatic patients.Am J Resrir Crit Care Med,1996,153(4Pt 1):1 398~1 404

171.Eum SY,Haile S,Lefort J,et al.Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness.Proc Natl Acad Sci USA,1995,92:12 290~12 294

172.Lamkhioued B,Garcia-Zepeda EA,Abi-Younes S,et al.Monocyte chemoattractant protein(MCP)4expression in the airways of patients with asthma.Induction in epithelial cells and mononuclear cells by proinflammatory cytokines.Am J Respir Crit Care Med,2000,162:723~732

173.Dosanjh A,Zuraw B.Endothelin-1(ET-1)decreases human bronchial epithelial cell migration and proliferation:implications for airway remodeling in asthma.J Asthma,2003,40:883~886

174.Olman MA.Epithelial cell modulation of airway fibrosis in asthma.Am J Respir Cell Mol Biol,2003,28:125~128

175.Brewster CEP,Howarth PH,Djukanovic R,et al.Myofibroblasts and sub-epithelial fibrosis in bronchial asthma.Am J Respir Cell Mol Biol,1990,3:507~511

176.Wggs BR,Bosken C,Pare PD,et al.A model of airway narrowing in asthma and in chronic obstructive pulmonary disease.Am Rev Respir Dis,1992,145:1 251~1 258

177.Vignola AM,Chanez P,Chiappara G,et al.Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis.Am J Respir Crit Care Med,1997,156(2Pt 1):591~599

178.Hoshino M,Nakamura Y,Sim JJ.Expression of growth factors and remodeling of the airway wall in bronchial asthma.Thorax,1998,53:21~27

179.Tang W,Geba GP,Zheng T,et al.Targeted expression of I’L-11in the murine airway causes lymphocytic inflammation,bronchial remodeling,and airways obstruction.J Clin Invest,1996,98:2 845~2 853

180.Xing Z,Ohkawa Y,Jordana M,et al.Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia,monocytosis and fibrotic reactions.J Clin Invest,1996,97:1 102~1 110

181.Walker C,Bode E,Boer L,et al.Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage.Am Rev Respir Dis,1992,146:109~115

182.Corrigan CJ,Kay AB.CD4T-lymphocyte activation in acute severe asthma.Relationship to disease severity and atopic status.Am Rev Respir Dis,1990,141(4Pt 1):970~977

183.Humbert M,Grant JA,Taborda-Barata L,et al.High-affinity IgE receptor(FcepsilonRI)bearing cells in bronchial biopsies from atopic and nonatopic asthma.Am J Respir Crit Care Med,1996,153(6Pt 1):1 931~1 937

184.Kotsimbos TC,Ghaffar O,Minshall EM,et al.Expression of interleukin-4receptorα-subunit is increased in bronchial biopsies from atopic and nonatopic asthmatics.J Allergy Clin Immunol,1998,102:859~866

185.Kotsimbos AT,Humbert M,Minshall E,et al.Upregulation of alpha GM-CSF-receptor in nonatopic asthma but not in atopic asthma.J Allergy Clin Immunol,1997,99:666~672

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈